These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32973854)

  • 1. MRP Transporters and
    Colombo F; Paolo D; Cominelli E; Sparvoli F; Nielsen E; Pilu R
    Front Plant Sci; 2020; 11():1301. PubMed ID: 32973854
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Raboy V
    Plants (Basel); 2020 Jan; 9(2):. PubMed ID: 31979164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytic Acid and Transporters: What Can We Learn from
    Cominelli E; Pilu R; Sparvoli F
    Plants (Basel); 2020 Jan; 9(1):. PubMed ID: 31948109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean lines.
    Redekar NR; Biyashev RM; Jensen RV; Helm RF; Grabau EA; Maroof MA
    BMC Genomics; 2015 Dec; 16():1074. PubMed ID: 26678836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytic acid accumulation in plants: Biosynthesis pathway regulation and role in human diet.
    Silva VM; Putti FF; White PJ; Reis ARD
    Plant Physiol Biochem; 2021 Jul; 164():132-146. PubMed ID: 33991859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and Molecular Characterization of Low Phytate Basmati Rice Through Induced Mutagenesis, Hybridization, Backcross, and Marker Assisted Breeding.
    Qamar ZU; Hameed A; Ashraf M; Rizwan M; Akhtar M
    Front Plant Sci; 2019; 10():1525. PubMed ID: 31850026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Control of Seed Phytate Accumulation and the Development of Low-Phytate Crops: A Review and Perspective.
    Wang W; Xie Y; Liu L; King GJ; White P; Ding G; Wang S; Cai H; Wang C; Xu F; Shi L
    J Agric Food Chem; 2022 Mar; 70(11):3375-3390. PubMed ID: 35275483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.).
    Yuan FJ; Zhao HJ; Ren XL; Zhu SL; Fu XJ; Shu QY
    Theor Appl Genet; 2007 Nov; 115(7):945-57. PubMed ID: 17701395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of low phytic acid1-7 (lpa1-7), a new ZmMRP4 mutation in maize.
    Cerino Badone F; Amelotti M; Cassani E; Pilu R
    J Hered; 2012 Jul; 103(4):598-605. PubMed ID: 22563127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network Inference of Transcriptional Regulation in Germinating Low Phytic Acid Soybean Seeds.
    DeMers LC; Raboy V; Li S; Saghai Maroof MA
    Front Plant Sci; 2021; 12():708286. PubMed ID: 34531883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Potential of
    Colombo F; Sangiorgio S; Abruzzese A; Bononi M; Tateo F; Singh SK; Nocito FF; Pilu R
    Front Biosci (Landmark Ed); 2022 Oct; 27(10):284. PubMed ID: 36336866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seed Biofortification and Phytic Acid Reduction: A Conflict of Interest for the Plant?
    Sparvoli F; Cominelli E
    Plants (Basel); 2015 Nov; 4(4):728-55. PubMed ID: 27135349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241).
    Pilu R; Panzeri D; Gavazzi G; Rasmussen SK; Consonni G; Nielsen E
    Theor Appl Genet; 2003 Oct; 107(6):980-7. PubMed ID: 14523526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. lpa1-5525: A New lpa1 Mutant Isolated in a Mutagenized Population by a Novel Non-Disrupting Screening Method.
    Borlini G; Rovera C; Landoni M; Cassani E; Pilu R
    Plants (Basel); 2019 Jul; 8(7):. PubMed ID: 31284582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low phytic acid 1 mutation in maize modifies density, starch properties, cations, and fiber contents in the seed.
    Landoni M; Cerino Badone F; Haman N; Schiraldi A; Fessas D; Cesari V; Toschi I; Cremona R; Delogu C; Villa D; Cassani E; Pilu R
    J Agric Food Chem; 2013 May; 61(19):4622-30. PubMed ID: 23638689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.).
    Campion B; Sparvoli F; Doria E; Tagliabue G; Galasso I; Fileppi M; Bollini R; Nielsen E
    Theor Appl Genet; 2009 Apr; 118(6):1211-21. PubMed ID: 19224193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.).
    Liu QL; Xu XH; Ren XL; Fu HW; Wu DX; Shu QY
    Theor Appl Genet; 2007 Mar; 114(5):803-14. PubMed ID: 17219209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress in breeding low phytate crops.
    Raboy V
    J Nutr; 2002 Mar; 132(3):503S-505S. PubMed ID: 11880580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients.
    Pramitha JL; Rana S; Aggarwal PR; Ravikesavan R; Joel AJ; Muthamilarasan M
    Adv Genet; 2021; 107():89-120. PubMed ID: 33641749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The suppression of TdMRP3 genes reduces the phytic acid and increases the nutrient accumulation in durum wheat grain.
    Frittelli A; Botticella E; Palombieri S; Masci S; Celletti S; Fontanella MC; Astolfi S; De Vita P; Volpato M; Sestili F
    Front Plant Sci; 2023; 14():1079559. PubMed ID: 36743506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.