BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32974194)

  • 1. Targeting Base Excision Repair in Cancer: NQO1-Bioactivatable Drugs Improve Tumor Selectivity and Reduce Treatment Toxicity Through Radiosensitization of Human Cancer.
    Starcher CL; Pay SL; Singh N; Yeh IJ; Bhandare SB; Su X; Huang X; Bey EA; Motea EA; Boothman DA
    Front Oncol; 2020; 10():1575. PubMed ID: 32974194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor-selective use of DNA base excision repair inhibition in pancreatic cancer using the NQO1 bioactivatable drug, β-lapachone.
    Chakrabarti G; Silvers MA; Ilcheva M; Liu Y; Moore ZR; Luo X; Gao J; Anderson G; Liu L; Sarode V; Gerber DE; Burma S; DeBerardinis RJ; Gerson SL; Boothman DA
    Sci Rep; 2015 Nov; 5():17066. PubMed ID: 26602448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The NQO1 bioactivatable drug, β-lapachone, alters the redox state of NQO1+ pancreatic cancer cells, causing perturbation in central carbon metabolism.
    Silvers MA; Deja S; Singh N; Egnatchik RA; Sudderth J; Luo X; Beg MS; Burgess SC; DeBerardinis RJ; Boothman DA; Merritt ME
    J Biol Chem; 2017 Nov; 292(44):18203-18216. PubMed ID: 28916726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalase abrogates β-lapachone-induced PARP1 hyperactivation-directed programmed necrosis in NQO1-positive breast cancers.
    Bey EA; Reinicke KE; Srougi MC; Varnes M; Anderson VE; Pink JJ; Li LS; Patel M; Cao L; Moore Z; Rommel A; Boatman M; Lewis C; Euhus DM; Bornmann WG; Buchsbaum DJ; Spitz DR; Gao J; Boothman DA
    Mol Cancer Ther; 2013 Oct; 12(10):2110-20. PubMed ID: 23883585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NQO1-Mediated Tumor-Selective Lethality and Radiosensitization for Head and Neck Cancer.
    Li LS; Reddy S; Lin ZH; Liu S; Park H; Chun SG; Bornmann WG; Thibodeaux J; Yan J; Chakrabarti G; Xie XJ; Sumer BD; Boothman DA; Yordy JS
    Mol Cancer Ther; 2016 Jul; 15(7):1757-67. PubMed ID: 27196777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NQO1-dependent, Tumor-selective Radiosensitization of Non-small Cell Lung Cancers.
    Motea EA; Huang X; Singh N; Kilgore JA; Williams NS; Xie XJ; Gerber DE; Beg MS; Bey EA; Boothman DA
    Clin Cancer Res; 2019 Apr; 25(8):2601-2609. PubMed ID: 30617135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An NQO1 substrate with potent antitumor activity that selectively kills by PARP1-induced programmed necrosis.
    Huang X; Dong Y; Bey EA; Kilgore JA; Bair JS; Li LS; Patel M; Parkinson EI; Wang Y; Williams NS; Gao J; Hergenrother PJ; Boothman DA
    Cancer Res; 2012 Jun; 72(12):3038-47. PubMed ID: 22532167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leveraging an NQO1 Bioactivatable Drug for Tumor-Selective Use of Poly(ADP-ribose) Polymerase Inhibitors.
    Huang X; Motea EA; Moore ZR; Yao J; Dong Y; Chakrabarti G; Kilgore JA; Silvers MA; Patidar PL; Cholka A; Fattah F; Cha Y; Anderson GG; Kusko R; Peyton M; Yan J; Xie XJ; Sarode V; Williams NS; Minna JD; Beg M; Gerber DE; Bey EA; Boothman DA
    Cancer Cell; 2016 Dec; 30(6):940-952. PubMed ID: 27960087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prostate cancer radiosensitization through poly(ADP-Ribose) polymerase-1 hyperactivation.
    Dong Y; Bey EA; Li LS; Kabbani W; Yan J; Xie XJ; Hsieh JT; Gao J; Boothman DA
    Cancer Res; 2010 Oct; 70(20):8088-96. PubMed ID: 20940411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. β-Lapachone Selectively Kills Hepatocellular Carcinoma Cells by Targeting NQO1 to Induce Extensive DNA Damage and PARP1 Hyperactivation.
    Zhao W; Jiang L; Fang T; Fang F; Liu Y; Zhao Y; You Y; Zhou H; Su X; Wang J; Liu S; Chen Y; Wan J; Huang X
    Front Oncol; 2021; 11():747282. PubMed ID: 34676172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Augmented Concentration of Isopentyl-Deoxynyboquinone in Tumors Selectively Kills NAD(P)H Quinone Oxidoreductase 1-Positive Cancer Cells through Programmed Necrotic and Apoptotic Mechanisms.
    Wang J; Su X; Jiang L; Boudreau MW; Chatkewitz LE; Kilgore JA; Zahid KR; Williams NS; Chen Y; Liu S; Hergenrother PJ; Huang X
    Cancers (Basel); 2023 Dec; 15(24):. PubMed ID: 38136388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCNA inhibition enhances the cytotoxicity of β-lapachone in NQO1-Positive cancer cells by augmentation of oxidative stress-induced DNA damage.
    Su X; Wang J; Jiang L; Chen Y; Lu T; Mendonca MS; Huang X
    Cancer Lett; 2021 Oct; 519():304-314. PubMed ID: 34329742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor-selective, futile redox cycle-induced bystander effects elicited by NQO1 bioactivatable radiosensitizing drugs in triple-negative breast cancers.
    Cao L; Li LS; Spruell C; Xiao L; Chakrabarti G; Bey EA; Reinicke KE; Srougi MC; Moore Z; Dong Y; Vo P; Kabbani W; Yang CR; Wang X; Fattah F; Morales JC; Motea EA; Bornmann WG; Yordy JS; Boothman DA
    Antioxid Redox Signal; 2014 Jul; 21(2):237-50. PubMed ID: 24512128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IP-DNQ induces mitochondrial dysfunction and G2/M phase cell cycle arrest to selectively kill NQO1-positive pancreatic cancer cells.
    Jiang L; Liu Y; Tumbath S; Boudreau MW; Chatkewitz LE; Wang J; Su X; Zahid KR; Li K; Chen Y; Yang K; Hergenrother PJ; Huang X
    Antioxid Redox Signal; 2023 Nov; ():. PubMed ID: 37950707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A self-amplified nanocatalytic system for achieving "1 + 1 + 1 > 3" chemodynamic therapy on triple negative breast cancer.
    Zhou L; Chen J; Sun Y; Chai K; Zhu Z; Wang C; Chen M; Han W; Hu X; Li R; Yao T; Li H; Dong C; Shi S
    J Nanobiotechnology; 2021 Sep; 19(1):261. PubMed ID: 34481495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic Effect of β-Lapachone and Aminooxyacetic Acid on Central Metabolism in Breast Cancer.
    Chang MC; Mahar R; McLeod MA; Giacalone AG; Huang X; Boothman DA; Merritt ME
    Nutrients; 2022 Jul; 14(15):. PubMed ID: 35893874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating endogenous NQO1 levels identifies key regulatory mechanisms of action of β-lapachone for pancreatic cancer therapy.
    Li LS; Bey EA; Dong Y; Meng J; Patra B; Yan J; Xie XJ; Brekken RA; Barnett CC; Bornmann WG; Gao J; Boothman DA
    Clin Cancer Res; 2011 Jan; 17(2):275-85. PubMed ID: 21224367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by ß-lapachone.
    Chakrabarti G; Moore ZR; Luo X; Ilcheva M; Ali A; Padanad M; Zhou Y; Xie Y; Burma S; Scaglioni PP; Cantley LC; DeBerardinis RJ; Kimmelman AC; Lyssiotis CA; Boothman DA
    Cancer Metab; 2015; 3():12. PubMed ID: 26462257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using a novel NQO1 bioactivatable drug, beta-lapachone (ARQ761), to enhance chemotherapeutic effects by metabolic modulation in pancreatic cancer.
    Beg MS; Huang X; Silvers MA; Gerber DE; Bolluyt J; Sarode V; Fattah F; Deberardinis RJ; Merritt ME; Xie XJ; Leff R; Laheru D; Boothman DA
    J Surg Oncol; 2017 Jul; 116(1):83-88. PubMed ID: 28346693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting Attomolar DNA-Damaging Anticancer Drug Activity in Cell Lysates with Electrochemical DNA Devices.
    Wettasinghe AP; Singh N; Starcher CL; DiTusa CC; Ishak-Boushaki Z; Kahanda D; McMullen R; Motea EA; Slinker JD
    ACS Sens; 2021 Jul; 6(7):2622-2629. PubMed ID: 34156840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.