These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 32974289)

  • 1. Development of a Genome-Scale Metabolic Model of
    Garcia S; Thompson RA; Giannone RJ; Dash S; Maranas CD; Trinh CT
    Front Bioeng Biotechnol; 2020; 8():772. PubMed ID: 32974289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum.
    Thompson RA; Layton DS; Guss AM; Olson DG; Lynd LR; Trinh CT
    Metab Eng; 2015 Nov; 32():207-219. PubMed ID: 26497628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous carbohydrate esterases of Clostridium thermocellum are identified and disrupted for enhanced isobutyl acetate production from cellulose.
    Seo H; Nicely PN; Trinh CT
    Biotechnol Bioeng; 2020 Jul; 117(7):2223-2236. PubMed ID: 32333614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring complex cellular phenotypes and model-guided strain design with a novel genome-scale metabolic model of Clostridium thermocellum DSM 1313 implementing an adjustable cellulosome.
    Thompson RA; Dahal S; Garcia S; Nookaew I; Trinh CT
    Biotechnol Biofuels; 2016; 9(1):194. PubMed ID: 27602057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production.
    Roberts SB; Gowen CM; Brooks JP; Fong SS
    BMC Syst Biol; 2010 Mar; 4():31. PubMed ID: 20307315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clostridium thermocellum: A microbial platform for high-value chemical production from lignocellulose.
    Mazzoli R; Olson DG
    Adv Appl Microbiol; 2020; 113():111-161. PubMed ID: 32948265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a core
    Dash S; Khodayari A; Zhou J; Holwerda EK; Olson DG; Lynd LR; Maranas CD
    Biotechnol Biofuels; 2017; 10():108. PubMed ID: 28469704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum.
    Tian L; Papanek B; Olson DG; Rydzak T; Holwerda EK; Zheng T; Zhou J; Maloney M; Jiang N; Giannone RJ; Hettich RL; Guss AM; Lynd LR
    Biotechnol Biofuels; 2016; 9():116. PubMed ID: 27257435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic and proteomic changes from medium supplementation and strain evolution in high-yielding Clostridium thermocellum strains.
    Papanek B; O'Dell KB; Manga P; Giannone RJ; Klingeman DM; Hettich RL; Brown SD; Guss AM
    J Ind Microbiol Biotechnol; 2018 Nov; 45(11):1007-1015. PubMed ID: 30187243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated omics analyses reveal the details of metabolic adaptation of
    Poudel S; Giannone RJ; Rodriguez M; Raman B; Martin MZ; Engle NL; Mielenz JR; Nookaew I; Brown SD; Tschaplinski TJ; Ussery D; Hettich RL
    Biotechnol Biofuels; 2017; 10():14. PubMed ID: 28077967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering promiscuity of chloramphenicol acetyltransferase for microbial designer ester biosynthesis.
    Seo H; Lee JW; Giannone RJ; Dunlap NJ; Trinh CT
    Metab Eng; 2021 Jul; 66():179-190. PubMed ID: 33872779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic microplate assay for direct microbial conversion of switchgrass and Avicel using Clostridium thermocellum.
    Oguntimein GB; Rodriguez M; Dumitrache A; Shollenberger T; Decker SR; Davison BH; Brown SD
    Biotechnol Lett; 2018 Feb; 40(2):303-308. PubMed ID: 29124514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational design and analysis of modular cells for large libraries of exchangeable product synthesis modules.
    Garcia S; Trinh CT
    Metab Eng; 2021 Sep; 67():453-463. PubMed ID: 34339856
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Whitham JM; Moon JW; Rodriguez M; Engle NL; Klingeman DM; Rydzak T; Abel MM; Tschaplinski TJ; Guss AM; Brown SD
    Biotechnol Biofuels; 2018; 11():98. PubMed ID: 29632556
    [No Abstract]   [Full Text] [Related]  

  • 15.
    Jacobson TB; Korosh TK; Stevenson DM; Foster C; Maranas C; Olson DG; Lynd LR; Amador-Noguez D
    mSystems; 2020 Mar; 5(2):. PubMed ID: 32184362
    [No Abstract]   [Full Text] [Related]  

  • 16. Overflow metabolism and growth cessation in Clostridium thermocellum DSM1313 during high cellulose loading fermentations.
    Thompson RA; Trinh CT
    Biotechnol Bioeng; 2017 Nov; 114(11):2592-2604. PubMed ID: 28671264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals.
    Bilal M; Nawaz MZ; Iqbal HMN; Hou J; Mahboob S; Al-Ghanim KA; Cheng H
    Protein Pept Lett; 2018; 25(2):108-119. PubMed ID: 29359652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously.
    Xiong W; Reyes LH; Michener WE; Maness PC; Chou KJ
    Biotechnol Bioeng; 2018 Jul; 115(7):1755-1763. PubMed ID: 29537062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A detailed genome-scale metabolic model of Clostridium thermocellum investigates sources of pyrophosphate for driving glycolysis.
    Schroeder WL; Kuil T; van Maris AJA; Olson DG; Lynd LR; Maranas CD
    Metab Eng; 2023 May; 77():306-322. PubMed ID: 37085141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotinamide cofactor ratios in engineered strains of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.
    Beri D; Olson DG; Holwerda EK; Lynd LR
    FEMS Microbiol Lett; 2016 Jun; 363(11):. PubMed ID: 27190292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.