These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 3297473)

  • 1. The effect of fat on bone mineral measurements in normal subjects with recommended values of bone, muscle and fat attenuation coefficients.
    Webber CE
    Clin Phys Physiol Meas; 1987 May; 8(2):143-58. PubMed ID: 3297473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic errors in bone-mineral measurements by quantitative computed tomography.
    Rao GU; Yaghmai I; Wist AO; Arora G
    Med Phys; 1987; 14(1):62-9. PubMed ID: 3561338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The error due to fat inhomogeneity in lumbar spine bone mineral measurements.
    Farrell TJ; Webber CE
    Clin Phys Physiol Meas; 1989 Feb; 10(1):57-64. PubMed ID: 2785442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of the volume fraction of fat, water and bone mineral in spongiosa for red marrow dosimetry in molecular radiotherapy by using a dual-energy (SPECT/)CT.
    Salas-Ramirez M; Lassmann M; Tran-Gia J
    Z Med Phys; 2022 Nov; 32(4):428-437. PubMed ID: 35292186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a prototype dual-energy computed tomographic apparatus. II. Determination of vertebral bone mineral content.
    Vetter JR; Perman WH; Kalender WA; Mazess RB; Holden JE
    Med Phys; 1986; 13(3):340-3. PubMed ID: 3724694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of trabecular bone mineral by dual energy computed tomography.
    Adams JE; Chen SZ; Adams PH; Isherwood I
    J Comput Assist Tomogr; 1982 Jun; 6(3):601-7. PubMed ID: 7096705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triple-photon energy absorptiometry in the measurement of bone mineral.
    Jonson R; Roos B; Hansson T
    Acta Radiol; 1988; 29(4):461-4. PubMed ID: 3408608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of bone mineral content and bone mass by non-invasive radiologic methods.
    Andresen J; Nielsen HE
    Acta Radiol Diagn (Stockh); 1986; 27(6):609-17. PubMed ID: 3544680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marrow Adipose Tissue Quantification of the Lumbar Spine by Using Dual-Energy CT and Single-Voxel (1)H MR Spectroscopy: A Feasibility Study.
    Bredella MA; Daley SM; Kalra MK; Brown JK; Miller KK; Torriani M
    Radiology; 2015 Oct; 277(1):230-5. PubMed ID: 25988401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimum photon energies for the measurement of bone mineral and fat fractions.
    Watt DE
    Br J Radiol; 1975 Apr; 48(568):265-74. PubMed ID: 1131484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Experimental studies on the accuracy of mineral content assessment in spongiosa bone using quantitative CT (single energy measurement)].
    Rohloff R; Hitzler H; Arndt W; Frey KW
    Rofo; 1985 Dec; 143(6):692-7. PubMed ID: 3001863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of fat on bone measurements with dual-energy absorptiometry.
    Hangartner TN; Johnston CC
    Bone Miner; 1990 Apr; 9(1):71-81. PubMed ID: 2337690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The measurement of trabecular bone mineral density using coherent and Compton scattered photons in vitro.
    Ling SS; Rustgi S; Karellas A; Craven JD; Whiting JS; Greenfield MA; Stern R
    Med Phys; 1982; 9(2):208-15. PubMed ID: 7087905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of dual-energy x-ray absorptiometry and dual photon absorptiometry for bone mineral measurements of the lumbar spine.
    Wahner HW; Dunn WL; Brown ML; Morin RL; Riggs BL
    Mayo Clin Proc; 1988 Nov; 63(11):1075-84. PubMed ID: 3193817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Errors in dual-energy X-ray absorptiometry of the lumbar spine owing to fat distribution and soft tissue thickness during weight change.
    Tothill P; Avenell A
    Br J Radiol; 1994 Jan; 67(793):71-5. PubMed ID: 8298878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computed tomography scanning for the measurement of bone mineral in the human spine.
    Weissberger MA; Zamenhof RG; Aronow S; Neer RM
    J Comput Assist Tomogr; 1978 Jul; 2(3):253-62. PubMed ID: 263488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent-Compton scattering for the assessment of bone mineral content using heavily filtered x-ray beams.
    Webster DJ; Lillicrap SC
    Phys Med Biol; 1985 Jun; 30(6):531-9. PubMed ID: 4011675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of temperature on QCT: implications for mineral densitometry.
    Whitehouse RW; Economou G; Adams JE
    J Comput Assist Tomogr; 1993; 17(6):945-51. PubMed ID: 8227582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Errors in dual-energy X-ray scanning of the hip because of nonuniform fat distribution.
    Tothill P; Weir N; Loveland J
    J Clin Densitom; 2014; 17(1):91-6. PubMed ID: 23522983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of subcutaneous fat on bone mineral content measurements with the 'single-energy' photon absorptiometry technique.
    Zeitz L
    Acta Radiol Ther Phys Biol; 1972 Oct; 11(5):401-10. PubMed ID: 4649688
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.