These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 32974946)
1. Genome-wide association study-based deep learning for survival prediction. Sun T; Wei Y; Chen W; Ding Y Stat Med; 2020 Dec; 39(30):4605-4620. PubMed ID: 32974946 [TBL] [Abstract][Full Text] [Related]
2. Genome-Wide Association Studies-Based Machine Learning for Prediction of Age-Related Macular Degeneration Risk. Yan Q; Jiang Y; Huang H; Swaroop A; Chew EY; Weeks DE; Chen W; Ding Y Transl Vis Sci Technol; 2021 Feb; 10(2):29. PubMed ID: 34003914 [TBL] [Abstract][Full Text] [Related]
3. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions. Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187 [TBL] [Abstract][Full Text] [Related]
4. DNN-Dom: predicting protein domain boundary from sequence alone by deep neural network. Shi Q; Chen W; Huang S; Jin F; Dong Y; Wang Y; Xue Z Bioinformatics; 2019 Dec; 35(24):5128-5136. PubMed ID: 31197306 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests. Nguyen TT; Huang J; Wu Q; Nguyen T; Li M BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662 [TBL] [Abstract][Full Text] [Related]
6. Approximate Bayesian neural networks in genomic prediction. Waldmann P Genet Sel Evol; 2018 Dec; 50(1):70. PubMed ID: 30577737 [TBL] [Abstract][Full Text] [Related]
7. Prediction of adverse drug reactions due to genetic predisposition using deep neural networks. Dafniet B; Taboureau O Mol Inform; 2024 Jun; 43(6):e202400021. PubMed ID: 38850150 [TBL] [Abstract][Full Text] [Related]
8. Machine learning models outperform deep learning models, provide interpretation and facilitate feature selection for soybean trait prediction. Gill M; Anderson R; Hu H; Bennamoun M; Petereit J; Valliyodan B; Nguyen HT; Batley J; Bayer PE; Edwards D BMC Plant Biol; 2022 Apr; 22(1):180. PubMed ID: 35395721 [TBL] [Abstract][Full Text] [Related]
9. A deep neural network-based approach for prediction of mutagenicity of compounds. Kumar R; Khan FU; Sharma A; Siddiqui MH; Aziz IB; Kamal MA; Ashraf GM; Alghamdi BS; Uddin MS Environ Sci Pollut Res Int; 2021 Sep; 28(34):47641-47650. PubMed ID: 33895950 [TBL] [Abstract][Full Text] [Related]
10. Deep Learning Approaches for Automatic Localization in Medical Images. Alaskar H; Hussain A; Almaslukh B; Vaiyapuri T; Sbai Z; Dubey AK Comput Intell Neurosci; 2022; 2022():6347307. PubMed ID: 35814554 [TBL] [Abstract][Full Text] [Related]
11. Lung cancer survival period prediction and understanding: Deep learning approaches. Doppalapudi S; Qiu RG; Badr Y Int J Med Inform; 2021 Apr; 148():104371. PubMed ID: 33461009 [TBL] [Abstract][Full Text] [Related]
12. Explainable deep transfer learning model for disease risk prediction using high-dimensional genomic data. Liu L; Meng Q; Weng C; Lu Q; Wang T; Wen Y PLoS Comput Biol; 2022 Jul; 18(7):e1010328. PubMed ID: 35839250 [TBL] [Abstract][Full Text] [Related]
13. DNN-PNN: A parallel deep neural network model to improve anticancer drug sensitivity. Chen S; Yang Y; Zhou H; Sun Q; Su R Methods; 2023 Jan; 209():1-9. PubMed ID: 36410694 [TBL] [Abstract][Full Text] [Related]
14. Exploiting deep transfer learning for the prediction of functional non-coding variants using genomic sequence. Chen L; Wang Y; Zhao F Bioinformatics; 2022 Jun; 38(12):3164-3172. PubMed ID: 35389435 [TBL] [Abstract][Full Text] [Related]
15. Individualized prediction of depressive disorder in the elderly: A multitask deep learning approach. Xu Z; Zhang Q; Li W; Li M; Yip PSF Int J Med Inform; 2019 Dec; 132():103973. PubMed ID: 31569007 [TBL] [Abstract][Full Text] [Related]
16. Importance-aware personalized learning for early risk prediction using static and dynamic health data. Tan Q; Ye M; Ma AJ; Yip TC; Wong GL; Yuen PC J Am Med Inform Assoc; 2021 Mar; 28(4):713-726. PubMed ID: 33496786 [TBL] [Abstract][Full Text] [Related]
17. Multi-task deep learning-based survival analysis on the prognosis of late AMD using the longitudinal data in AREDS. Ghahramani G; Brendel M; Lin M; Chen Q; Keenan T; Chen K; Chew E; Lu Z; Peng Y; Wang F AMIA Annu Symp Proc; 2021; 2021():506-515. PubMed ID: 35308963 [TBL] [Abstract][Full Text] [Related]
18. A review on deep learning approaches in healthcare systems: Taxonomies, challenges, and open issues. Shamshirband S; Fathi M; Dehzangi A; Chronopoulos AT; Alinejad-Rokny H J Biomed Inform; 2021 Jan; 113():103627. PubMed ID: 33259944 [TBL] [Abstract][Full Text] [Related]
19. Chances and challenges of machine learning-based disease classification in genetic association studies illustrated on age-related macular degeneration. Guenther F; Brandl C; Winkler TW; Wanner V; Stark K; Kuechenhoff H; Heid IM Genet Epidemiol; 2020 Oct; 44(7):759-777. PubMed ID: 32741009 [TBL] [Abstract][Full Text] [Related]
20. Comparing deep neural network and other machine learning algorithms for stroke prediction in a large-scale population-based electronic medical claims database. Chen-Ying Hung ; Wei-Chen Chen ; Po-Tsun Lai ; Ching-Heng Lin ; Chi-Chun Lee Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3110-3113. PubMed ID: 29060556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]