BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 32975195)

  • 1. Estimating sleep from multisensory armband measurements: validity and reliability in teens.
    Roane BM; Van Reen E; Hart CN; Wing R; Carskadon MA
    J Sleep Res; 2015 Dec; 24(6):714-21. PubMed ID: 26126746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The feasibility and reliability of actigraphy to monitor sleep in intensive care patients: an observational study.
    Delaney LJ; Litton E; Melehan KL; Huang HC; Lopez V; Van Haren F
    Crit Care; 2021 Jan; 25(1):42. PubMed ID: 33514414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A longitudinal study of infant 24-hour sleep: comparisons of sleep diary and accelerometer with different algorithms.
    Liu T; Benjamin-Neelon SE
    Sleep; 2023 Nov; 46(11):. PubMed ID: 37279933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sleep assessments in healthy school-aged children using actigraphy: concordance with polysomnography.
    Spruyt K; Gozal D; Dayyat E; Roman A; Molfese DL
    J Sleep Res; 2011 Mar; 20(1 Pt 2):223-32. PubMed ID: 20629939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pilot time-in-bed restriction intervention behaviorally enhances slow-wave activity in older adults.
    Wilckens KA; Habte RF; Dong Y; Stepan ME; Dessa KM; Whitehead AB; Peng CW; Fletcher ME; Buysse DJ
    Front Sleep; 2024; 2():. PubMed ID: 38938690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges and Emerging Technologies within the Field of Pediatric Actigraphy.
    Galland B; Meredith-Jones K; Terrill P; Taylor R
    Front Psychiatry; 2014; 5():99. PubMed ID: 25191278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the usability of an automatic sleep staging program via portable 1-channel electroencephalograph and manual sleep staging with traditional polysomnography.
    Kawamura A; Yoshiike T; Matsuo M; Kadotani H; Oike Y; Kawasaki M; Kurumai Y; Nagao K; Takami M; Yamada N; Kuriyama K
    Sleep Biol Rhythms; 2023 Jan; 21(1):85-95. PubMed ID: 38468906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance evaluation of an automated single-channel sleep-wake detection algorithm.
    Kaplan RF; Wang Y; Loparo KA; Kelly MR; Bootzin RR
    Nat Sci Sleep; 2014; 6():113-22. PubMed ID: 25342922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Machine Learning Model for Predicting Sleep and Wakefulness Based on Accelerometry, Skin Temperature and Contextual Information.
    Logacjov A; Skarpsno ES; Kongsvold A; Bach K; Mork PJ
    Nat Sci Sleep; 2024; 16():699-710. PubMed ID: 38863481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-supervised learning of accelerometer data provides new insights for sleep and its association with mortality.
    Yuan H; Plekhanova T; Walmsley R; Reynolds AC; Maddison KJ; Bucan M; Gehrman P; Rowlands A; Ray DW; Bennett D; McVeigh J; Straker L; Eastwood P; Kyle SD; Doherty A
    medRxiv; 2023 Jul; ():. PubMed ID: 37461532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-supervised learning of accelerometer data provides new insights for sleep and its association with mortality.
    Yuan H; Plekhanova T; Walmsley R; Reynolds AC; Maddison KJ; Bucan M; Gehrman P; Rowlands A; Ray DW; Bennett D; McVeigh J; Straker L; Eastwood P; Kyle SD; Doherty A
    NPJ Digit Med; 2024 May; 7(1):86. PubMed ID: 38769347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Jerks are Useful: Extracting pulse rate from wrist-placed accelerometry jerk during sleep in children.
    Weaver RG; Chandrashekhar MVS; Armstrong B; White JW; Finnegan O; Cepni AB; Burkart S; Beets M; Adams EL; de Zambotti M; Welk GJ; Nelakuditi S; Brown D; Pate R; Wang Y; Ghosal R; Zhong Z; Yang H
    Sleep; 2024 May; ():. PubMed ID: 38700932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of cannabis use proximal to sleep and cannabinoid metabolites on sleep architecture.
    Althoff MD; Kinney GL; Aloia MS; Sempio C; Klawitter J; Bowler RP
    J Clin Sleep Med; 2024 May; ():. PubMed ID: 38804689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimodal Ambulatory Sleep Detection.
    Chen W; Sano A; Martinez DL; Taylor S; McHill AW; Phillips AJK; Barger L; Klerman EB; Picard RW
    IEEE EMBS Int Conf Biomed Health Inform; 2017 Feb; 2017():465-468. PubMed ID: 29938711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circadian Factors in Stroke: A Clinician's Perspective.
    Korostovtseva LS; Kolomeichuk SN
    Cardiol Ther; 2023 Jun; 12(2):275-295. PubMed ID: 37191897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of agreement between actigraphy and polysomnography for assessing sleep during posttraumatic amnesia.
    Fedele B; McKenzie D; Williams G; Giles R; Olver J
    J Clin Sleep Med; 2022 Nov; 18(11):2605-2616. PubMed ID: 35912692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sleep-wake parameters can be detected in patients with chronic stroke using a multisensor accelerometer: a validation study.
    Gottlieb E; Churilov L; Werden E; Churchward T; Pase MP; Egorova N; Howard ME; Brodtmann A
    J Clin Sleep Med; 2021 Feb; 17(2):167-175. PubMed ID: 32975195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The validity of Actiwatch2 and SenseWear armband compared against polysomnography at different ambient temperature conditions.
    Shin M; Swan P; Chow CM
    Sleep Sci; 2015; 8(1):9-15. PubMed ID: 26483937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of Photoplethysmography-Based Sleep Staging Compared With Polysomnography in Healthy Middle-Aged Adults.
    Fonseca P; Weysen T; Goelema MS; Møst EIS; Radha M; Lunsingh Scheurleer C; van den Heuvel L; Aarts RM
    Sleep; 2017 Jul; 40(7):. PubMed ID: 28838130
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.