These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32975247)

  • 1. The reservoir area dependent thermal transport at the nanoscale interface.
    Liu C; Fu Q; Gu Z; Lu P
    Phys Chem Chem Phys; 2020 Oct; 22(38):22016-22022. PubMed ID: 32975247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale Quantum Thermal Conductance at Water Interface: Green's Function Approach Based on One-Dimensional Phonon Model.
    Umegaki T; Tanaka S
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32151110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors influencing thermal transport across graphene/metal interfaces with van der Waals interactions.
    Yang H; Tang Y; Yang P
    Nanoscale; 2019 Aug; 11(30):14155-14163. PubMed ID: 31334741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving Huge Thermal Conductance of Metallic Nitride on Graphene Through Enhanced Elastic and Inelastic Phonon Transmission.
    Zheng W; Huang B; Li H; Koh YK
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35487-35494. PubMed ID: 30226044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the electron-phonon interfacial conductance on the thermal transport at metal/dielectric interfaces.
    Lombard J; Detcheverry F; Merabia S
    J Phys Condens Matter; 2015 Jan; 27(1):015007. PubMed ID: 25425559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interface design of the thermoelectric transport properties of phosphorene-tetrathiafulvalene nanoscale devices.
    Qiu Y; Zhang B
    Phys Chem Chem Phys; 2023 Oct; 25(40):27448-27456. PubMed ID: 37796158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Interfacial Electronic Properties on Phonon Transport in Two-Dimensional MoS
    Yan Z; Chen L; Yoon M; Kumar S
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33299-33306. PubMed ID: 27934181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-dimensional harmonic chain model of vibration-mode matching in solid-liquid interfacial thermal transport.
    Matsubara H; Surblys D; Ohara T
    Phys Rev E; 2023 Feb; 107(2-1):024103. PubMed ID: 36932576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational predictions of quantum thermal transport across nanoscale interfaces.
    Zhou H; Ong ZY; Zhang G; Zhang YW
    Nanoscale; 2022 Jul; 14(26):9209-9217. PubMed ID: 35726755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the interfacial friction force and thermal conductance by altering phonon properties at contact interface.
    Dong Y; Ding Y; Rui Z; Lian F; Hui W; Wu J; Wu Z; Yan P
    Nanotechnology; 2022 Mar; 33(23):. PubMed ID: 35180710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-temperature thermoelectric transport behavior of the Al/γ-Al
    Samanta PN; Leszczynski J
    Phys Chem Chem Phys; 2018 May; 20(21):14513-14524. PubMed ID: 29766155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring anharmonic phonon transport across interfaces in one-dimensional lattice chains.
    Fang J; Qian X; Zhao CY; Li B; Gu X
    Phys Rev E; 2020 Feb; 101(2-1):022133. PubMed ID: 32168675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures.
    Yan Z; Chen L; Yoon M; Kumar S
    Nanoscale; 2016 Feb; 8(7):4037-46. PubMed ID: 26817419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms for enhancing interfacial phonon thermal transport by large-size nanostructures.
    Yin E; Li Q; Lian W
    Phys Chem Chem Phys; 2023 Feb; 25(5):3629-3638. PubMed ID: 36263751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximization of thermal conductance at interfaces via exponentially mass-graded interlayers.
    Rastgarkafshgarkolaei R; Zhang J; Polanco CA; Le NQ; Ghosh AW; Norris PM
    Nanoscale; 2019 Mar; 11(13):6254-6262. PubMed ID: 30882127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface.
    Zhou Y; Zhang X; Hu M
    Nanoscale; 2016 Jan; 8(4):1994-2002. PubMed ID: 26700890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal transport across metal–insulator interface via electron–phonon interaction.
    Zhang L; Lü JT; Wang JS; Li B
    J Phys Condens Matter; 2013 Nov; 25(44):445801. PubMed ID: 24131959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantized thermal transport across contacts of rough surfaces.
    Gotsmann B; Lantz MA
    Nat Mater; 2013 Jan; 12(1):59-65. PubMed ID: 23085568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of contact atom distribution at the interface on the phonon transport.
    Liu C; Lu P; Gu Z; Yang J; Chen Y
    Phys Chem Chem Phys; 2020 Dec; 22(47):27690-27697. PubMed ID: 33241241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoelectric Power of a Single van der Waals Interface between Carbon Nanotubes.
    Hamasaki H; Li Y; Ohnishi M; Shiomi J; Yanagi K; Hirahara K
    ACS Nano; 2024 Jan; 18(1):612-617. PubMed ID: 38127507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.