These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32975401)

  • 1. Boron Carbonitride Lithium-Ion Capacitors with an Electrostatically Expanded Operating Voltage Window.
    Jiang H; Shi D; Sun X; Wang S; Li Y; Chang B; Zhang B; Shao Y; Wu Y; Hao X
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47425-47434. PubMed ID: 32975401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesh-Like Carbon Nanosheets with High-Level Nitrogen Doping for High-Energy Dual-Carbon Lithium-Ion Capacitors.
    Li Z; Cao L; Chen W; Huang Z; Liu H
    Small; 2019 Apr; 15(15):e1805173. PubMed ID: 30861630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances of Carbon Materials for Dual-Carbon Lithium-Ion Capacitors: A Review.
    Duan Y; Li C; Ye Z; Li H; Yang Y; Sui D; Lu Y
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode.
    Sun F; Gao J; Zhu Y; Pi X; Wang L; Liu X; Qin Y
    Sci Rep; 2017 Feb; 7():40990. PubMed ID: 28155853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Synthesis of Graphene with Fast Ion/Electron Channels for High-Performance Symmetric Lithium-Ion Capacitors.
    Xiao Y; Liu J; He D; Chen S; Peng W; Hu X; Liu T; Zhu Z; Bai Y
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38266-38277. PubMed ID: 34374273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defect-rich and N-doped hard carbon as a sustainable anode for high-energy lithium-ion capacitors.
    Jiang J; Zhang Y; Li Z; An Y; Zhu Q; Xu Y; Zang S; Dou H; Zhang X
    J Colloid Interface Sci; 2020 May; 567():75-83. PubMed ID: 32036116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Performance Lithium-Ion Hybrid Capacitors Employing Fe
    Zhang S; Li C; Zhang X; Sun X; Wang K; Ma Y
    ACS Appl Mater Interfaces; 2017 May; 9(20):17136-17144. PubMed ID: 28474525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Holey Ti
    Zhou HY; Lin LW; Sui ZY; Wang HY; Han BH
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12161-12170. PubMed ID: 36812348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boron carbonitride with tunable B/N Lewis acid/base sites for enhanced electrocatalytic overall water splitting.
    Shi D; Chang B; Ai Z; Jiang H; Chen F; Shao Y; Shen J; Wu Y; Hao X
    Nanoscale; 2021 Feb; 13(5):2849-2854. PubMed ID: 33533782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High performance Li-ion capacitor fabricated with dual graphene-based materials.
    Sui D; Wu M; Liu Y; Yang Y; Zhang H; Ma Y; Zhang L; Chen Y
    Nanotechnology; 2021 Jan; 32(1):015403. PubMed ID: 32947263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boost Anion Storage Capacity Using Conductive Polymer as a Pseudocapacitive Cathode for High-Energy and Flexible Lithium Ion Capacitors.
    Han C; Tong J; Tang X; Zhou D; Duan H; Li B; Wang G
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10479-10489. PubMed ID: 32049486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidized-Polydopamine-Coated Graphene Anodes and N,P Codoped Porous Foam Structure Activated Carbon Cathodes for High-Energy-Density Lithium-Ion Capacitors.
    Xiao Y; He D; Peng W; Chen S; Liu J; Chen H; Xin S; Bai Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10336-10348. PubMed ID: 33599127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A High-Performance Lithium-Ion Capacitor Based on 2D Nanosheet Materials.
    Li S; Chen J; Cui M; Cai G; Wang J; Cui P; Gong X; Lee PS
    Small; 2017 Feb; 13(6):. PubMed ID: 27893190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na
    Lu R; Ren X; Wang C; Zhan C; Nan D; Lv R; Shen W; Kang F; Huang ZH
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quinone/ester-based oxygen functional group-incorporated full carbon Li-ion capacitor for enhanced performance.
    Cai P; Zou K; Zou G; Hou H; Ji X
    Nanoscale; 2020 Feb; 12(6):3677-3685. PubMed ID: 31993622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The underestimated charge storage capability of carbon cathodes for advanced alkali metal-ion capacitors.
    Tan H; Lin X; Huang J; Huang J; Shi M; Du X; Zhang B
    Nanoscale; 2019 Jun; 11(24):11445-11450. PubMed ID: 31184685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors.
    Li B; Zheng J; Zhang H; Jin L; Yang D; Lv H; Shen C; Shellikeri A; Zheng Y; Gong R; Zheng JP; Zhang C
    Adv Mater; 2018 Apr; 30(17):e1705670. PubMed ID: 29527751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ High-Level Nitrogen Doping into Carbon Nanospheres and Boosting of Capacitive Charge Storage in Both Anode and Cathode for a High-Energy 4.5 V Full-Carbon Lithium-Ion Capacitor.
    Sun F; Liu X; Wu HB; Wang L; Gao J; Li H; Lu Y
    Nano Lett; 2018 Jun; 18(6):3368-3376. PubMed ID: 29708761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Li-Ion Capacitor Integrated with Nano-network-Structured Ni/NiO/C Anode and Nitrogen-Doped Carbonized Metal-Organic Framework Cathode with High Power and Long Cyclability.
    Cheng CF; Chen YM; Zou F; Liu K; Xia Y; Huang YF; Tung WY; Krishnan MR; Vogt BD; Wang CL; Ho RM; Zhu Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30694-30702. PubMed ID: 31373480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-Based Cathode Materials for Lithium-Ion Capacitors: A Review.
    Sui D; Chang M; Peng Z; Li C; He X; Yang Y; Liu Y; Lu Y
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.