BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 32975567)

  • 1. Design and Evaluation of Torque Compensation Controllers for a Lower Extremity Exoskeleton.
    Zhou X; Chen X
    J Biomech Eng; 2021 Jan; 143(1):. PubMed ID: 32975567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a Payload Adjustment Device for an Unpowered Lower-Limb Exoskeleton.
    Yun J; Kang O; Joe HM
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation-based biomechanical assessment of unpowered exoskeletons for running.
    Aftabi H; Nasiri R; Ahmadabadi MN
    Sci Rep; 2021 Jun; 11(1):11846. PubMed ID: 34088911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements.
    Vantilt J; Tanghe K; Afschrift M; Bruijnes AKBD; Junius K; Geeroms J; Aertbeliën E; De Groote F; Lefeber D; Jonkers I; De Schutter J
    J Neuroeng Rehabil; 2019 Jun; 16(1):65. PubMed ID: 31159874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Validation of a Self-Aligning Knee Exoskeleton With Hip Rotation Capability.
    Li G; Liang X; Lu H; Su T; Hou ZG
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():472-481. PubMed ID: 38227411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive interaction torque-based AAN control for lower limb rehabilitation exoskeleton.
    Wang Y; Wang H; Tian Y
    ISA Trans; 2022 Sep; 128(Pt A):184-197. PubMed ID: 34716010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing the relationship between peak assistance torque and metabolic cost reduction during running with ankle exoskeletons.
    Miller DE; Tan GR; Farina EM; Sheets-Singer AL; Collins SH
    J Neuroeng Rehabil; 2022 May; 19(1):46. PubMed ID: 35549977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Evaluation of a Force Sensor-Controlled Upper-Limb Power-Assisted Exoskeleton with High Backdrivability.
    Liu C; Liang H; Ueda N; Li P; Fujimoto Y; Zhu C
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33182271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking.
    Cao W; Zhang Z; Chen C; He Y; Wang D; Wu X
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating Multiarticular Energy during Human Walking and Running with an Unpowered Exoskeleton.
    Zhou T; Zhou Z; Zhang H; Chen W
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effects of Incline Level on Optimized Lower-Limb Exoskeleton Assistance: A Case Series.
    Franks PW; Bryan GM; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2494-2505. PubMed ID: 35930513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An assistance approach for a powered knee exoskeleton during level walking and the effects on metabolic cost.
    Jang J; Lim B; Shim Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6216-6219. PubMed ID: 31947263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring Human-Exoskeleton Interaction Dynamics: An In-Depth Analysis of Knee Flexion-Extension Performance across Varied Robot Assistance-Resistance Configurations.
    Mosconi D; Moreno Y; Siqueira A
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance.
    Witte KA; Fiers P; Sheets-Singer AL; Collins SH
    Sci Robot; 2020 Mar; 5(40):. PubMed ID: 33022600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Template model inspired leg force feedback based control can assist human walking.
    Zhao G; Sharbafi M; Vlutters M; van Asseldonk E; Seyfarth A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():473-478. PubMed ID: 28813865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.