These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32975582)

  • 1. A Method to Use Kriging With Large Sets of Control Points to Morph Finite Element Models of the Human Body.
    Janák T; Lafon Y; Petit P; Beillas P
    J Biomech Eng; 2021 Feb; 143(2):. PubMed ID: 32975582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age- and sex-specific thorax finite element model development and simulation.
    Schoell SL; Weaver AA; Vavalle NA; Stitzel JD
    Traffic Inj Prev; 2015; 16 Suppl 1():S57-65. PubMed ID: 26027976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Kriging and Moving Least Square Methods to Change the Geometry of Human Body Models.
    Jolivet E; Lafon Y; Petit P; Beillas P
    Stapp Car Crash J; 2015 Nov; 59():337-57. PubMed ID: 26660750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesh-morphing algorithms for specimen-specific finite element modeling.
    Sigal IA; Hardisty MR; Whyne CM
    J Biomech; 2008; 41(7):1381-9. PubMed ID: 18397789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and preliminary validation of computationally efficient and detailed 50th percentile female human body models.
    Robinson A; von Kleeck BW; Gayzik FS
    Accid Anal Prev; 2023 Sep; 190():107182. PubMed ID: 37390749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Radial Basis Function Methods in the Development of a 95th Percentile Male Seated FEA Model.
    Vavalle NA; Schoell SL; Weaver AA; Stitzel JD; Gayzik FS
    Stapp Car Crash J; 2014 Nov; 58():361-84. PubMed ID: 26192960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a computationally efficient full human body finite element model.
    Schwartz D; Guleyupoglu B; Koya B; Stitzel JD; Gayzik FS
    Traffic Inj Prev; 2015; 16 Suppl 1():S49-56. PubMed ID: 26027975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An automated method to morph finite element whole-body human models with a wide range of stature and body shape for both men and women.
    Zhang K; Cao L; Fanta A; Reed MP; Neal M; Wang JT; Lin CH; Hu J
    J Biomech; 2017 Jul; 60():253-260. PubMed ID: 28668185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frontal crash simulations using parametric human models representing a diverse population.
    Hu J; Zhang K; Reed MP; Wang JT; Neal M; Lin CH
    Traffic Inj Prev; 2019; 20(sup1):S97-S105. PubMed ID: 31381451
    [No Abstract]   [Full Text] [Related]  

  • 10. Morphing the feature-based multi-blocks of normative/healthy vertebral geometries to scoliosis vertebral geometries: development of personalized finite element models.
    Hadagali P; Peters JR; Balasubramanian S
    Comput Methods Biomech Biomed Engin; 2018 Mar; 21(4):297-324. PubMed ID: 29528253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Cortical Thickness Mapping Method for the Coxal Bone Using Morphing.
    Giudice JS; Poulard D; Nie B; Wu T; Panzer MB
    Front Bioeng Biotechnol; 2018; 6():149. PubMed ID: 30406094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of finite element human body models for use in a standardized protocol for pedestrian safety assessment.
    Decker W; Koya B; Pak W; Untaroiu CD; Gayzik FS
    Traffic Inj Prev; 2019; 20(sup2):S32-S36. PubMed ID: 31356121
    [No Abstract]   [Full Text] [Related]  

  • 13. Modular incorporation of deformable spine and 3D neck musculature into a simplified human body finite element model.
    Lalwala M; Koya B; Devane K; Gayzik FS; Weaver AA
    Comput Methods Biomech Biomed Engin; 2024; 27(1):45-55. PubMed ID: 36657616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method to geometrically personalize a detailed finite-element model of the spine.
    Lalonde NM; Petit Y; Aubin CE; Wagnac E; Arnoux PJ
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):2014-21. PubMed ID: 23434601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Computational Efficient Method to Assess the Sensitivity of Finite-Element Models: An Illustration With the Hemipelvis.
    O'Rourke D; Martelli S; Bottema M; Taylor M
    J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27685017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Full Body Validation of a 5th Percentile Female Finite Element Model.
    Davis ML; Koya B; Schap JM; Gayzik FS
    Stapp Car Crash J; 2016 Nov; 60():509-544. PubMed ID: 27871105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element reconstruction of a vehicle-to-pedestrian impact.
    Costa C; Aira J; Koya B; Decker W; Sink J; Withers S; Beal R; Schieffer S; Gayzik S; Stitzel J; Weaver A
    Traffic Inj Prev; 2020 Oct; 21(sup1):S145-S147. PubMed ID: 33147058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design optimization of stent and its dilatation balloon using kriging surrogate model.
    Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B
    Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development, Evaluation, and Sensitivity Analysis of Parametric Finite Element Whole-Body Human Models in Side Impacts.
    Hwang E; Hu J; Chen C; Klein KF; Miller CS; Reed MP; Rupp JD; Hallman JJ
    Stapp Car Crash J; 2016 Nov; 60():473-508. PubMed ID: 27871104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.
    Zhang X; Kim D; Shen S; Yuan P; Liu S; Tang Z; Zhang G; Zhou X; Gateno J; Liebschner MAK; Xia JJ
    Biomech Model Mechanobiol; 2018 Apr; 17(2):387-402. PubMed ID: 29027022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.