These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

604 related articles for article (PubMed ID: 32975927)

  • 1. Exploding the Repeat Length Paradigm while Exploring Amyloid Toxicity in Huntington's Disease.
    Wetzel R
    Acc Chem Res; 2020 Oct; 53(10):2347-2357. PubMed ID: 32975927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding Landscape of Mutant Huntingtin Exon1: Diffusible Multimers, Oligomers and Fibrils, and No Detectable Monomer.
    Sahoo B; Arduini I; Drombosky KW; Kodali R; Sanders LH; Greenamyre JT; Wetzel R
    PLoS One; 2016; 11(6):e0155747. PubMed ID: 27271685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis implicates the amyloid fibril as the toxic entity in Huntington's disease.
    Drombosky KW; Rode S; Kodali R; Jacob TC; Palladino MJ; Wetzel R
    Neurobiol Dis; 2018 Dec; 120():126-138. PubMed ID: 30171891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-State Nuclear Magnetic Resonance on the Static and Dynamic Domains of Huntingtin Exon-1 Fibrils.
    Isas JM; Langen R; Siemer AB
    Biochemistry; 2015 Jun; 54(25):3942-9. PubMed ID: 26020223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Targetable Self-association Surface of the Huntingtin exon1 Helical Tetramer Required for Assembly of Amyloid Pre-nucleation Oligomers.
    Mishra R; Gerlach GJ; Sahoo B; Camacho CJ; Wetzel R
    J Mol Biol; 2024 Jun; 436(12):168607. PubMed ID: 38734203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling the Molecular Complexity of N-Terminus Huntingtin Oligomers: Insights into Polymorphic Structures.
    Nanajkar N; Sahoo A; Matysiak S
    J Phys Chem B; 2024 Aug; 128(32):7761-7769. PubMed ID: 39092631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow amyloid nucleation via α-helix-rich oligomeric intermediates in short polyglutamine-containing huntingtin fragments.
    Jayaraman M; Kodali R; Sahoo B; Thakur AK; Mayasundari A; Mishra R; Peterson CB; Wetzel R
    J Mol Biol; 2012 Feb; 415(5):881-99. PubMed ID: 22178474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation landscapes of Huntingtin exon 1 protein fragments and the critical repeat length for the onset of Huntington's disease.
    Chen M; Wolynes PG
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4406-4411. PubMed ID: 28400517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The polyglutamine domain is the primary driver of seeding in huntingtin aggregation.
    Skeens A; Siriwardhana C; Massinople SE; Wunder MM; Ellis ZL; Keith KM; Girman T; Frey SL; Legleiter J
    PLoS One; 2024; 19(3):e0298323. PubMed ID: 38483973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamics of early-state transcriptional changes and aggregate formation in a Huntington's disease cell model.
    van Hagen M; Piebes DGE; de Leeuw WC; Vuist IM; van Roon-Mom WMC; Moerland PD; Verschure PJ
    BMC Genomics; 2017 May; 18(1):373. PubMed ID: 28499347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyglutamine expansion mutation yields a pathological epitope linked to nucleation of protein aggregate: determinant of Huntington's disease onset.
    Sugaya K; Matsubara S; Kagamihara Y; Kawata A; Hayashi H
    PLoS One; 2007 Jul; 2(7):e635. PubMed ID: 17653262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleation of Huntingtin Aggregation Proceeds via Conformational Conversion of Pre-Formed, Sparsely-Populated Tetramers.
    Torricella F; Tugarinov V; Clore GM
    Adv Sci (Weinh); 2024 Jun; 11(24):e2309217. PubMed ID: 38476051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SUMOylation Prevents Huntingtin Fibrillization and Localization onto Lipid Membranes.
    Sedighi F; Adegbuyiro A; Legleiter J
    ACS Chem Neurosci; 2020 Feb; 11(3):328-343. PubMed ID: 31880908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregation behavior of chemically synthesized, full-length huntingtin exon1.
    Sahoo B; Singer D; Kodali R; Zuchner T; Wetzel R
    Biochemistry; 2014 Jun; 53(24):3897-907. PubMed ID: 24921664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. β-hairpin-mediated nucleation of polyglutamine amyloid formation.
    Kar K; Hoop CL; Drombosky KW; Baker MA; Kodali R; Arduini I; van der Wel PC; Horne WS; Wetzel R
    J Mol Biol; 2013 Apr; 425(7):1183-97. PubMed ID: 23353826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. D-polyglutamine amyloid recruits L-polyglutamine monomers and kills cells.
    Kar K; Arduini I; Drombosky KW; van der Wel PC; Wetzel R
    J Mol Biol; 2014 Feb; 426(4):816-29. PubMed ID: 24291210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autophagy preferentially degrades non-fibrillar polyQ aggregates.
    Zhao DY; Bäuerlein FJB; Saha I; Hartl FU; Baumeister W; Wilfling F
    Mol Cell; 2024 May; 84(10):1980-1994.e8. PubMed ID: 38759629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divalent cations promote huntingtin fibril formation on endoplasmic reticulum derived and model membranes.
    Skeens A; Markle JM; Petipas G; Frey SL; Legleiter J
    Biochim Biophys Acta Biomembr; 2024 Aug; 1866(6):184339. PubMed ID: 38763270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Huntington's disease induced cardiac amyloidosis is reversed by modulating protein folding and oxidative stress pathways in the Drosophila heart.
    Melkani GC; Trujillo AS; Ramos R; Bodmer R; Bernstein SI; Ocorr K
    PLoS Genet; 2013; 9(12):e1004024. PubMed ID: 24367279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of flanking sequences and cellular context on subcellular behavior and pathology of mutant HTT.
    Chongtham A; Bornemann DJ; Barbaro BA; Lukacsovich T; Agrawal N; Syed A; Worthge S; Purcell J; Burke J; Chin TM; Marsh JL
    Hum Mol Genet; 2020 Mar; 29(4):674-688. PubMed ID: 31943010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.