These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32975943)

  • 1. Bayesian Algorithm for Retrosynthesis.
    Guo Z; Wu S; Ohno M; Yoshida R
    J Chem Inf Model; 2020 Oct; 60(10):4474-4486. PubMed ID: 32975943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Retrosynthetic Reactions Using Self-Corrected Transformer Neural Networks.
    Zheng S; Rao J; Zhang Z; Xu J; Yang Y
    J Chem Inf Model; 2020 Jan; 60(1):47-55. PubMed ID: 31825611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemistry-informed molecular graph as reaction descriptor for machine-learned retrosynthesis planning.
    Zhang B; Zhang X; Du W; Song Z; Zhang G; Zhang G; Wang Y; Chen X; Jiang J; Luo Y
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2212711119. PubMed ID: 36191228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer Learning: Making Retrosynthetic Predictions Based on a Small Chemical Reaction Dataset Scale to a New Level.
    Bai R; Zhang C; Wang L; Yao C; Ge J; Duan H
    Molecules; 2020 May; 25(10):. PubMed ID: 32438572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Design of Field-Effect Sensors Using Partial Differential Equations, Bayesian Inversion, and Artificial Neural Networks.
    Khodadadian A; Parvizi M; Teshnehlab M; Heitzinger C
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planning chemical syntheses with deep neural networks and symbolic AI.
    Segler MHS; Preuss M; Waller MP
    Nature; 2018 Mar; 555(7698):604-610. PubMed ID: 29595767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-driven approaches for identifying hyperparameters in multi-step retrosynthesis.
    Westerlund AM; Barge B; Mervin L; Genheden S
    Mol Inform; 2023 Nov; 42(11):e202300128. PubMed ID: 37679293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian molecular design with a chemical language model.
    Ikebata H; Hongo K; Isomura T; Maezono R; Yoshida R
    J Comput Aided Mol Des; 2017 Apr; 31(4):379-391. PubMed ID: 28281211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AI-Driven Synthetic Route Design Incorporated with Retrosynthesis Knowledge.
    Ishida S; Terayama K; Kojima R; Takasu K; Okuno Y
    J Chem Inf Model; 2022 Mar; 62(6):1357-1367. PubMed ID: 35258953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks.
    Mariño IP; Zaikin A; Míguez J
    PLoS One; 2017; 12(8):e0182015. PubMed ID: 28797087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RPBP: Deep Retrosynthesis Reaction Prediction Based on Byproducts.
    Yan Y; Zhao Y; Yao H; Feng J; Liang L; Han W; Xu X; Pu C; Zang C; Chen L; Li Y; Liu H; Lu T; Chen Y; Zhang Y
    J Chem Inf Model; 2023 Oct; 63(19):5956-5970. PubMed ID: 37724339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical assessment of synthetic accessibility scores in computer-assisted synthesis planning.
    Skoraczyński G; Kitlas M; Miasojedow B; Gambin A
    J Cheminform; 2023 Jan; 15(1):6. PubMed ID: 36641473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Merging enzymatic and synthetic chemistry with computational synthesis planning.
    Levin I; Liu M; Voigt CA; Coley CW
    Nat Commun; 2022 Dec; 13(1):7747. PubMed ID: 36517480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning in Computer-Aided Synthesis Planning.
    Coley CW; Green WH; Jensen KF
    Acc Chem Res; 2018 May; 51(5):1281-1289. PubMed ID: 29715002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants.
    Liang F; Jin IH
    Neural Comput; 2013 Aug; 25(8):2199-234. PubMed ID: 23607562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets.
    Kaiser TM; Burger PB
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31167452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncertainty propagation for dropout-based Bayesian neural networks.
    Mae Y; Kumagai W; Kanamori T
    Neural Netw; 2021 Dec; 144():394-406. PubMed ID: 34562813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retrosynthesis prediction using an end-to-end graph generative architecture for molecular graph editing.
    Zhong W; Yang Z; Chen CY
    Nat Commun; 2023 May; 14(1):3009. PubMed ID: 37230985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data Augmentation and Pretraining for Template-Based Retrosynthetic Prediction in Computer-Aided Synthesis Planning.
    Fortunato ME; Coley CW; Barnes BC; Jensen KF
    J Chem Inf Model; 2020 Jul; 60(7):3398-3407. PubMed ID: 32568548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bayesian convolutional neural network-based generalized linear model.
    Jeon Y; Chang W; Jeong S; Han S; Park J
    Biometrics; 2024 Mar; 80(2):. PubMed ID: 38888097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.