These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32976002)

  • 1. Black-Silicon Ultraviolet Photodiodes Achieve External Quantum Efficiency above 130.
    Garin M; Heinonen J; Werner L; Pasanen TP; Vähänissi V; Haarahiltunen A; Juntunen MA; Savin H
    Phys Rev Lett; 2020 Sep; 125(11):117702. PubMed ID: 32976002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum efficiency of black silicon photodiodes at VUV wavelengths.
    Tsang T; Bolotnikov A; Haarahiltunen A; Heinonen J
    Opt Express; 2020 Apr; 28(9):13299-13309. PubMed ID: 32403808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facilely Achieved Self-Biased Black Silicon Heterojunction Photodiode with Broadband Quantum Efficiency Approaching 100.
    Zhang Y; Loh JYY; Kherani NP
    Adv Sci (Weinh); 2022 Nov; 9(33):e2203234. PubMed ID: 36253154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120.
    Davis NJ; Böhm ML; Tabachnyk M; Wisnivesky-Rocca-Rivarola F; Jellicoe TC; Ducati C; Ehrler B; Greenham NC
    Nat Commun; 2015 Sep; 6():8259. PubMed ID: 26411283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The generalized Shockley-Queisser limit for nanostructured solar cells.
    Xu Y; Gong T; Munday JN
    Sci Rep; 2015 Sep; 5():13536. PubMed ID: 26329479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors.
    Beard MC; Luther JM; Semonin OE; Nozik AJ
    Acc Chem Res; 2013 Jun; 46(6):1252-60. PubMed ID: 23113604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Ultraviolet Sensor and Indicator Module Based on p-i-n Photodiodes.
    Chiu YC; Yeh PS; Wang TH; Chou TC; Wu CY; Zhang JJ
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31766168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Highly Robust Silicon Ultraviolet Selective Radiation Sensor Using Differential Spectral Response Method.
    Sipauba Carvalho da Silva YR; Kuroda R; Sugawa S
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31248157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Modeling of Silicon Photodiodes for High-Accuracy Applications Part II. Interpreting Oxide-Bias Experiments.
    Geist J; Köhler R; Goebel R; Robinson AM; James CR
    J Res Natl Inst Stand Technol; 1991; 96(4):471-479. PubMed ID: 28184123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Few-photon detection using InAs avalanche photodiodes.
    Tan CH; Velichko A; Lim LW; Ng JS
    Opt Express; 2019 Feb; 27(4):5835-5842. PubMed ID: 30876178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review Application of Nanostructured Black Silicon.
    Lv J; Zhang T; Zhang P; Zhao Y; Li S
    Nanoscale Res Lett; 2018 Apr; 13(1):110. PubMed ID: 29675768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency above the Shockley-Queisser limit by using nanophotonic effects to create multiple effective bandgaps with a single semiconductor.
    Yu Z; Sandhu S; Fan S
    Nano Lett; 2014 Jan; 14(1):66-70. PubMed ID: 24279726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opportunities and Limitations for Nanophotonic Structures To Exceed the Shockley-Queisser Limit.
    Mann SA; Grote RR; Osgood RM; Alù A; Garnett EC
    ACS Nano; 2016 Sep; 10(9):8620-31. PubMed ID: 27580421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral supralinearity prediction of silicon photodiodes in the near-infrared range.
    Tanabe M; Amemiya K; Numata T; Fukuda D
    Appl Opt; 2015 Dec; 54(36):10705-10. PubMed ID: 26837039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum efficiency of silicon photodiodes in the near-infrared spectral range.
    Hicks C; Kalatsky M; Metzler RA; Goushcha AO
    Appl Opt; 2003 Aug; 42(22):4415-22. PubMed ID: 12916603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability and quantum efficiency performance of silicon photodiode detectors in the far ultraviolet.
    Canfield LR; Kerner J; Korde R
    Appl Opt; 1989 Sep; 28(18):3940-3. PubMed ID: 20555802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CMOS Image Sensor for Broad Spectral Range with >90% Quantum Efficiency.
    Setälä OE; Prest MJ; Stefanov KD; Jordan D; Soman MR; Vähänissi V; Savin H
    Small; 2023 Nov; 19(47):e2304001. PubMed ID: 37495833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical Modeling of Silicon Photodiodes for High-Accuracy Applications Part III: Interpolating and Extrapolating Internal Quantum-Efficiency Calibrations.
    Geist J; Robinson AM; James CR
    J Res Natl Inst Stand Technol; 1991; 96(4):481-492. PubMed ID: 28184124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials.
    Nikzad S; Hoenk M; Jewell AD; Hennessy JJ; Carver AG; Jones TJ; Goodsall TM; Hamden ET; Suvarna P; Bulmer J; Shahedipour-Sandvik F; Charbon E; Padmanabhan P; Hancock B; Bell LD
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27338399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.