These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32976413)

  • 1. Expansion of axial dispersion in a photopolymer-based holographic lens and its improvement for measuring displacement.
    Liu Y; Liu H; Wang B; Wei M; Li L; Wang W
    Appl Opt; 2020 Sep; 59(27):8279-8284. PubMed ID: 32976413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photopolymer-based coaxial holographic lens for spectral confocal displacement and morphology measurement.
    Liu H; Wang B; Wang R; Wang M; Yu D; Wang W
    Opt Lett; 2019 Jul; 44(14):3554-3557. PubMed ID: 31305571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature effects on axial dispersion in a photopolymer-based holographic lens.
    Liu H; Sun G; Li M; Li L; Zhang J; Tai H; Yu D
    Appl Opt; 2023 Feb; 62(6):1475-1482. PubMed ID: 36821307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications.
    Akbari H; Naydenova I; Martin S
    Appl Opt; 2014 Mar; 53(7):1343-53. PubMed ID: 24663364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a confocal dispersion objective lens based on the GRIN lens.
    Li C; Li K; Liu J; Lv Z; Li G; Li D
    Opt Express; 2022 Nov; 30(24):44290-44299. PubMed ID: 36523107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of temperature-induced spectrum characterization in a holographic sensor based on N-isopropylacrylamide photopolymer hydrogel.
    Liu H; Yu D; Zhou K; Wang S; Luo S; Wang W; Song Q
    Appl Opt; 2017 Nov; 56(32):9006-9013. PubMed ID: 29131186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full modeling and experimental validation of cylindrical holographic lenses recorded in Bayfol HX photopolymer and partly operating in the transition regime for solar concentration.
    Marín-Sáez J; Atencia J; Chemisana D; Collados MV
    Opt Express; 2018 May; 26(10):A398-A412. PubMed ID: 29801261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Holographic Lenses in an Environment-Friendly Photopolymer.
    Lloret T; Navarro-Fuster V; Ramírez MG; Ortuño M; Neipp C; Beléndez A; Pascual I
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of holographic sensing response in substrate-free acrylamide photopolymer.
    Zhou K; Geng Y; Liu H; Wang S; Mao D; Yu D
    Appl Opt; 2017 May; 56(13):3714-3724. PubMed ID: 28463259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry.
    Drexler W; Hitzenberger CK; Baumgartner A; Findl O; Sattmann H; Fercher AF
    Exp Eye Res; 1998 Jan; 66(1):25-33. PubMed ID: 9533828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear deformation response of a holographic sensor based on elastic poly(MMA-co-LMA) photopolymer.
    Liu H; Wei M; Li L; Wang B; Yu D; Wang W
    Opt Lett; 2021 Mar; 46(6):1249-1252. PubMed ID: 33720159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure-dependent diffraction spectrum response in photopolymer-based holographic sensor.
    Jiao X; Liu H; Wang B; Wang R; Li L
    Appl Opt; 2019 Oct; 58(30):8302-8308. PubMed ID: 31674505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propagation of data-modulated Gaussian beams through holographic optical elements.
    Tsui JM; Thompson C; Roth JM
    Opt Express; 2009 Mar; 17(7):5556-70. PubMed ID: 19333323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental assessment of a low-cost aberration-free compact double aperture four-hololens imaging system: application to the enhancement of sensitivity and accuracy of in-plane displacement measurement.
    Khan AA; Yadav HL
    Appl Opt; 2024 Apr; 63(12):3069-3078. PubMed ID: 38856450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photopolymer Holographic Lenses for Solar Energy Applications: A Review.
    Alfaro E; Lloret T; Vilardy JM; Bastidas M; Morales-Vidal M; Pascual I
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a photopolymer holographic lens for collimation of light from a green light-emitting diode.
    Keshri S; Murphy K; Toal V; Naydenova I; Martin S
    Appl Opt; 2018 Aug; 57(22):E163-E172. PubMed ID: 30117852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Holographic Lens Resolution Using the Convolution Theorem.
    Lloret T; Morales-Vidal M; Navarro-Fuster V; G Ramírez M; Beléndez A; Pascual I
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved chromatic confocal displacement-sensor based on a spatial-bandpass-filter and an X-shaped fiber-coupler.
    Bai J; Li X; Zhou Q; Ni K; Wang X
    Opt Express; 2019 Apr; 27(8):10961-10973. PubMed ID: 31052948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digital holographic testing of biconvex lenses.
    Chhaniwal VK; Kihiko JM; Dubey S; Shearon G; Javidi B; Anand A
    Appl Opt; 2013 Dec; 52(36):8714-22. PubMed ID: 24513936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding the realm of fiber optic confocal sensing for probing position, displacement, and velocity.
    Shafir E; Berkovic G
    Appl Opt; 2006 Oct; 45(30):7772-7. PubMed ID: 17068508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.