BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 32976679)

  • 1. Spage2vec: Unsupervised representation of localized spatial gene expression signatures.
    Partel G; Wählby C
    FEBS J; 2021 Mar; 288(6):1859-1870. PubMed ID: 32976679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impeller: a path-based heterogeneous graph learning method for spatial transcriptomic data imputation.
    Duan Z; Riffle D; Li R; Liu J; Min MR; Zhang J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38806165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell segmentation-free inference of cell types from in situ transcriptomics data.
    Park J; Choi W; Tiesmeyer S; Long B; Borm LE; Garren E; Nguyen TN; Tasic B; Codeluppi S; Graf T; Schlesner M; Stegle O; Eils R; Ishaque N
    Nat Commun; 2021 Jun; 12(1):3545. PubMed ID: 34112806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HyperGCN: an effective deep representation learning framework for the integrative analysis of spatial transcriptomics data.
    Ma Y; Liu L; Zhao Y; Hang B; Zhang Y
    BMC Genomics; 2024 Jun; 25(1):566. PubMed ID: 38840049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembling spatial clustering framework for heterogeneous spatial transcriptomics data with GRAPHDeep.
    Liu T; Fang Z; Li X; Zhang L; Cao DS; Li M; Yin M
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38243703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SpaNCMG: improving spatial domains identification of spatial transcriptomics using neighborhood-complementary mixed-view graph convolutional network.
    Si Z; Li H; Shang W; Zhao Y; Kong L; Long C; Zuo Y; Feng Z
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38811360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.
    Li H; Li H; Zhou J; Gao X
    Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-modal domain adaptation for revealing spatial functional landscape from spatially resolved transcriptomics.
    Wang L; Hu Y; Xiao K; Zhang C; Shi Q; Chen L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38819253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate single-molecule spot detection for image-based spatial transcriptomics with weakly supervised deep learning.
    Laubscher E; Wang X; Razin N; Dougherty T; Xu RJ; Ombelets L; Pao E; Graf W; Moffitt JR; Yue Y; Van Valen D
    Cell Syst; 2024 May; 15(5):475-482.e6. PubMed ID: 38754367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MIGGRI: A multi-instance graph neural network model for inferring gene regulatory networks for Drosophila from spatial expression images.
    Huang Y; Yu G; Yang Y
    PLoS Comput Biol; 2023 Nov; 19(11):e1011623. PubMed ID: 37939200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially aware dimension reduction for spatial transcriptomics.
    Shang L; Zhou X
    Nat Commun; 2022 Nov; 13(1):7203. PubMed ID: 36418351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TENET: Triple-enhancement based graph neural network for cell-cell interaction network reconstruction from spatial transcriptomics.
    Lee Y; Xu Y; Gao P; Chen J
    J Mol Biol; 2024 May; 436(9):168543. PubMed ID: 38508302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression.
    Xia C; Fan J; Emanuel G; Hao J; Zhuang X
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19490-19499. PubMed ID: 31501331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network.
    Huo Y; Guo Y; Wang J; Xue H; Feng Y; Chen W; Li X
    J Genet Genomics; 2023 Sep; 50(9):720-733. PubMed ID: 37356752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Edge-relational window-attentional graph neural network for gene expression prediction in spatial transcriptomics analysis.
    Chen C; Zhang Z; Tang P; Liu X; Huang B
    Comput Biol Med; 2024 May; 174():108449. PubMed ID: 38626512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational approach to identify cellular heterogeneity and tissue-specific gene regulatory networks.
    Jambusaria A; Klomp J; Hong Z; Rafii S; Dai Y; Malik AB; Rehman J
    BMC Bioinformatics; 2018 Jun; 19(1):217. PubMed ID: 29940845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network Visualization and Analysis of Spatially Aware Gene Expression Data with InsituNet.
    Salamon J; Qian X; Nilsson M; Lynn DJ
    Cell Syst; 2018 May; 6(5):626-630.e3. PubMed ID: 29753646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GeneExpressionSignature: an R package for discovering functional connections using gene expression signatures.
    Li F; Cao Y; Han L; Cui X; Xie D; Wang S; Bo X
    OMICS; 2013 Feb; 17(2):116-8. PubMed ID: 23374109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.