BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

532 related articles for article (PubMed ID: 32976740)

  • 1. Overcoming Immune Checkpoint Blockade Resistance via EZH2 Inhibition.
    Kim HJ; Cantor H; Cosmopoulos K
    Trends Immunol; 2020 Oct; 41(10):948-963. PubMed ID: 32976740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EZH2, a prominent orchestrator of genetic and epigenetic regulation of solid tumor microenvironment and immunotherapy.
    Sun S; Yu F; Xu D; Zheng H; Li M
    Biochim Biophys Acta Rev Cancer; 2022 Mar; 1877(2):188700. PubMed ID: 35217116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting EZH2 to overcome the resistance to immunotherapy in lung cancer.
    Shin DS; Park K; Garon E; Dubinett S
    Semin Oncol; 2022 Jul; ():. PubMed ID: 35851153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The complex role of EZH2 in the tumor microenvironment: opportunities and challenges for immunotherapy combinations.
    Qiu J; Sharma S; Rollins RA; Paul TA
    Future Med Chem; 2020 Aug; 12(15):1415-1430. PubMed ID: 32723083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies.
    Petitprez F; Meylan M; de Reyniès A; Sautès-Fridman C; Fridman WH
    Front Immunol; 2020; 11():784. PubMed ID: 32457745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-Activity Relationship Studies for Enhancer of Zeste Homologue 2 (EZH2) and Enhancer of Zeste Homologue 1 (EZH1) Inhibitors.
    Yang X; Li F; Konze KD; Meslamani J; Ma A; Brown PJ; Zhou MM; Arrowsmith CH; Kaniskan HÜ; Vedadi M; Jin J
    J Med Chem; 2016 Aug; 59(16):7617-33. PubMed ID: 27468126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EZH2 inhibition: a promising strategy to prevent cancer immune editing.
    Kang N; Eccleston M; Clermont PL; Latarani M; Male DK; Wang Y; Crea F
    Epigenomics; 2020 Aug; 12(16):1457-1476. PubMed ID: 32938196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance.
    Li Y; Liu J; Gao L; Liu Y; Meng F; Li X; Qin FX
    Immunol Lett; 2020 Apr; 220():88-96. PubMed ID: 30885690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overcoming malignant cell-based mechanisms of resistance to immune checkpoint blockade antibodies.
    Ajina R; Zahavi DJ; Zhang YW; Weiner LM
    Semin Cancer Biol; 2020 Oct; 65():28-37. PubMed ID: 31866479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H3K27me3 and EZH2 expression in melanoma: relevance for melanoma progression and response to immune checkpoint blockade.
    Hoffmann F; Niebel D; Aymans P; Ferring-Schmitt S; Dietrich D; Landsberg J
    Clin Epigenetics; 2020 Feb; 12(1):24. PubMed ID: 32041674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy.
    Tang T; Huang X; Zhang G; Hong Z; Bai X; Liang T
    Signal Transduct Target Ther; 2021 Feb; 6(1):72. PubMed ID: 33608497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The functions of EZH2 in immune cells: Principles for novel immunotherapies.
    Shao FF; Chen BJ; Wu GQ
    J Leukoc Biol; 2021 Jul; 110(1):77-87. PubMed ID: 33040370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune Therapy Opportunities in Ovarian Cancer.
    Kandalaft LE; Odunsi K; Coukos G
    Am Soc Clin Oncol Educ Book; 2020 May; 40():1-13. PubMed ID: 32412818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic regulation of cancer biology and anti-tumor immunity by EZH2.
    Christofides A; Karantanos T; Bardhan K; Boussiotis VA
    Oncotarget; 2016 Dec; 7(51):85624-85640. PubMed ID: 27793053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of EZH2 methyltransferase decreases immunoediting of mesothelioma cells by autologous macrophages through a PD-1-dependent mechanism.
    Hamaidia M; Gazon H; Hoyos C; Hoffmann GB; Louis R; Duysinx B; Willems L
    JCI Insight; 2019 Sep; 4(18):. PubMed ID: 31534051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EZH2 inhibitors: a patent review (2014-2016).
    Stazi G; Zwergel C; Mai A; Valente S
    Expert Opin Ther Pat; 2017 Jul; 27(7):797-813. PubMed ID: 28394193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting EZH2 in cancer therapy.
    Yamagishi M; Uchimaru K
    Curr Opin Oncol; 2017 Sep; 29(5):375-381. PubMed ID: 28665819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual Role of EZH2 in Cutaneous Anaplastic Large Cell Lymphoma: Promoting Tumor Cell Survival and Regulating Tumor Microenvironment.
    Yi S; Sun J; Qiu L; Fu W; Wang A; Liu X; Yang Y; Kadin ME; Tu P; Wang Y
    J Invest Dermatol; 2018 May; 138(5):1126-1136. PubMed ID: 29248547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual Inhibition of EZH2 and EZH1 Sensitizes PRC2-Dependent Tumors to Proteasome Inhibition.
    Rizq O; Mimura N; Oshima M; Saraya A; Koide S; Kato Y; Aoyama K; Nakajima-Takagi Y; Wang C; Chiba T; Ma A; Jin J; Iseki T; Nakaseko C; Iwama A
    Clin Cancer Res; 2017 Aug; 23(16):4817-4830. PubMed ID: 28490465
    [No Abstract]   [Full Text] [Related]  

  • 20. Combined inhibition of EZH2 and histone deacetylases as a potential epigenetic therapy for non-small-cell lung cancer cells.
    Takashina T; Kinoshita I; Kikuchi J; Shimizu Y; Sakakibara-Konishi J; Oizumi S; Nishimura M; Dosaka-Akita H
    Cancer Sci; 2016 Jul; 107(7):955-62. PubMed ID: 27116120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.