BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32976807)

  • 1. Involvement of Striatal Direct Pathway in Visual Spatial Attention in Mice.
    Wang L; Krauzlis RJ
    Curr Biol; 2020 Dec; 30(23):4739-4744.e5. PubMed ID: 32976807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of Striatal Neurons Causes a Perceptual Decision Bias during Visual Change Detection in Mice.
    Wang L; Rangarajan KV; Gerfen CR; Krauzlis RJ
    Neuron; 2018 Mar; 97(6):1369-1381.e5. PubMed ID: 29503185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of Sensory Encoding to Measured Bias.
    Jin M; Glickfeld LL
    J Neurosci; 2019 Jun; 39(26):5115-5127. PubMed ID: 31015339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of basal ganglia output by direct and indirect pathway projection neurons.
    Freeze BS; Kravitz AV; Hammack N; Berke JD; Kreitzer AC
    J Neurosci; 2013 Nov; 33(47):18531-9. PubMed ID: 24259575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Spatial Resolution During Locomotion and Heightened Attention in Mouse Primary Visual Cortex.
    Mineault PJ; Tring E; Trachtenberg JT; Ringach DL
    J Neurosci; 2016 Jun; 36(24):6382-92. PubMed ID: 27307228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionally specific optogenetic modulation in primate visual cortex.
    Chernov MM; Friedman RM; Chen G; Stoner GR; Roe AW
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):10505-10510. PubMed ID: 30257948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Striatal direct pathway modulates response time in execution of visual discrimination.
    Fukabori R; Okada K; Nishizawa K; Kai N; Kobayashi K; Uchigashima M; Watanabe M; Tsutsui Y; Kobayashi K
    Eur J Neurosci; 2012 Mar; 35(5):784-97. PubMed ID: 22356538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring and Updating of Action Selection for Goal-Directed Behavior through the Striatal Direct and Indirect Pathways.
    Nonomura S; Nishizawa K; Sakai Y; Kawaguchi Y; Kato S; Uchigashima M; Watanabe M; Yamanaka K; Enomoto K; Chiken S; Sano H; Soma S; Yoshida J; Samejima K; Ogawa M; Kobayashi K; Nambu A; Isomura Y; Kimura M
    Neuron; 2018 Sep; 99(6):1302-1314.e5. PubMed ID: 30146299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance in even a simple perceptual task depends on mouse secondary visual areas.
    Goldbach HC; Akitake B; Leedy CE; Histed MH
    Elife; 2021 Feb; 10():. PubMed ID: 33522482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Striatopallidal Neuron NMDA Receptors Control Synaptic Connectivity, Locomotor, and Goal-Directed Behaviors.
    Lambot L; Chaves Rodriguez E; Houtteman D; Li Y; Schiffmann SN; Gall D; de Kerchove d'Exaerde A
    J Neurosci; 2016 May; 36(18):4976-92. PubMed ID: 27147651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-error recruitment of frontal sensory cortical projections promotes attention in mice.
    Norman KJ; Riceberg JS; Koike H; Bateh J; McCraney SE; Caro K; Kato D; Liang A; Yamamuro K; Flanigan ME; Kam K; Falk EN; Brady DM; Cho C; Sadahiro M; Yoshitake K; Maccario P; Demars MP; Waltrip L; Varga AW; Russo SJ; Baxter MG; Shapiro ML; Rudebeck PH; Morishita H
    Neuron; 2021 Apr; 109(7):1202-1213.e5. PubMed ID: 33609483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The primate striatum: neuronal activity in relation to spatial attention versus motor preparation.
    Boussaoud D; Kermadi I
    Eur J Neurosci; 1997 Oct; 9(10):2152-68. PubMed ID: 9421175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry.
    Kravitz AV; Freeze BS; Parker PR; Kay K; Thwin MT; Deisseroth K; Kreitzer AC
    Nature; 2010 Jul; 466(7306):622-6. PubMed ID: 20613723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local and Global Influences of Visual Spatial Selection and Locomotion in Mouse Primary Visual Cortex.
    McBride EG; Lee SJ; Callaway EM
    Curr Biol; 2019 May; 29(10):1592-1605.e5. PubMed ID: 31056388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Causal Role for Mouse Superior Colliculus in Visual Perceptual Decision-Making.
    Wang L; McAlonan K; Goldstein S; Gerfen CR; Krauzlis RJ
    J Neurosci; 2020 May; 40(19):3768-3782. PubMed ID: 32253361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse Higher Visual Areas Provide Both Distributed and Specialized Contributions to Visually Guided Behaviors.
    Jin M; Glickfeld LL
    Curr Biol; 2020 Dec; 30(23):4682-4692.e7. PubMed ID: 33035487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct prefrontal top-down circuits differentially modulate sensorimotor behavior.
    Huda R; Sipe GO; Breton-Provencher V; Cruz KG; Pho GN; Adam E; Gunter LM; Sullins A; Wickersham IR; Sur M
    Nat Commun; 2020 Nov; 11(1):6007. PubMed ID: 33243980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetic insights into striatal function and behavior.
    Lenz JD; Lobo MK
    Behav Brain Res; 2013 Oct; 255():44-54. PubMed ID: 23628212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete representation of action space and value in all dorsal striatal pathways.
    Weglage M; Wärnberg E; Lazaridis I; Calvigioni D; Tzortzi O; Meletis K
    Cell Rep; 2021 Jul; 36(4):109437. PubMed ID: 34320355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opponent regulation of action performance and timing by striatonigral and striatopallidal pathways.
    Bakhurin KI; Li X; Friedman AD; Lusk NA; Watson GD; Kim N; Yin HH
    Elife; 2020 Apr; 9():. PubMed ID: 32324535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.