These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32976807)

  • 21. Selective Vulnerability of Striatal D2 versus D1 Dopamine Receptor-Expressing Medium Spiny Neurons in HIV-1 Tat Transgenic Male Mice.
    Schier CJ; Marks WD; Paris JJ; Barbour AJ; McLane VD; Maragos WF; McQuiston AR; Knapp PE; Hauser KF
    J Neurosci; 2017 Jun; 37(23):5758-5769. PubMed ID: 28473642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemogenetic Targeting of Dorsomedial Direct-pathway Striatal Projection Neurons Selectively Elicits Rotational Behavior in Mice.
    Bay Kønig A; Ciriachi C; Gether U; Rickhag M
    Neuroscience; 2019 Mar; 401():106-116. PubMed ID: 30668973
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Striatal indirect pathway mediates exploration via collicular competition.
    Lee J; Sabatini BL
    Nature; 2021 Nov; 599(7886):645-649. PubMed ID: 34732888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Medium spiny neurons of the anterior dorsomedial striatum mediate reversal learning in a cell-type-dependent manner.
    Wang X; Qiao Y; Dai Z; Sui N; Shen F; Zhang J; Liang J
    Brain Struct Funct; 2019 Jan; 224(1):419-434. PubMed ID: 30367246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reward expectation differentially modulates attentional behavior and activity in visual area V4.
    Baruni JK; Lau B; Salzman CD
    Nat Neurosci; 2015 Nov; 18(11):1656-63. PubMed ID: 26479590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Striatal Direct and Indirect Pathway Output Structures Are Differentially Altered in Mouse Models of Huntington's Disease.
    Barry J; Akopian G; Cepeda C; Levine MS
    J Neurosci; 2018 May; 38(20):4678-4694. PubMed ID: 29691329
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Medium spiny neurons activity reveals the discrete segregation of mouse dorsal striatum.
    Alegre-Cortés J; Sáez M; Montanari R; Reig R
    Elife; 2021 Feb; 10():. PubMed ID: 33599609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microstimulation of the frontal eye field and its effects on covert spatial attention.
    Moore T; Fallah M
    J Neurophysiol; 2004 Jan; 91(1):152-62. PubMed ID: 13679398
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coordinated Ramping of Dorsal Striatal Pathways preceding Food Approach and Consumption.
    London TD; Licholai JA; Szczot I; Ali MA; LeBlanc KH; Fobbs WC; Kravitz AV
    J Neurosci; 2018 Apr; 38(14):3547-3558. PubMed ID: 29523623
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of Striatal Cholinergic Interneurons and M1 and M4 Muscarinic Receptors in Motor Symptoms of Parkinson's Disease.
    Ztaou S; Maurice N; Camon J; Guiraudie-Capraz G; Kerkerian-Le Goff L; Beurrier C; Liberge M; Amalric M
    J Neurosci; 2016 Aug; 36(35):9161-72. PubMed ID: 27581457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Action suppression reveals opponent parallel control via striatal circuits.
    Cruz BF; Guiomar G; Soares S; Motiwala A; Machens CK; Paton JJ
    Nature; 2022 Jul; 607(7919):521-526. PubMed ID: 35794480
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential coding of reward and movement information in the dorsomedial striatal direct and indirect pathways.
    Shin JH; Kim D; Jung MW
    Nat Commun; 2018 Jan; 9(1):404. PubMed ID: 29374173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of Orienting Movements and Locomotion by Projection-Defined Subsets of Brainstem V2a Neurons.
    Usseglio G; Gatier E; Heuzé A; Hérent C; Bouvier J
    Curr Biol; 2020 Dec; 30(23):4665-4681.e6. PubMed ID: 33007251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feature-based attention in visual cortex.
    Maunsell JH; Treue S
    Trends Neurosci; 2006 Jun; 29(6):317-22. PubMed ID: 16697058
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mice Preferentially Use Increases in Cerebral Cortex Spiking to Detect Changes in Visual Stimuli.
    Cone JJ; Bade ML; Masse NY; Page EA; Freedman DJ; Maunsell JHR
    J Neurosci; 2020 Oct; 40(41):7902-7920. PubMed ID: 32917791
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuronal Modulations in Visual Cortex Are Associated with Only One of Multiple Components of Attention.
    Luo TZ; Maunsell JH
    Neuron; 2015 Jun; 86(5):1182-8. PubMed ID: 26050038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distinct Waking States for Strong Evoked Responses in Primary Visual Cortex and Optimal Visual Detection Performance.
    Neske GT; Nestvogel D; Steffan PJ; McCormick DA
    J Neurosci; 2019 Dec; 39(50):10044-10059. PubMed ID: 31672787
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Opposing Influence of Sensory and Motor Cortical Input on Striatal Circuitry and Choice Behavior.
    Lee CR; Yonk AJ; Wiskerke J; Paradiso KG; Tepper JM; Margolis DJ
    Curr Biol; 2019 Apr; 29(8):1313-1323.e5. PubMed ID: 30982651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sustained Gq-Protein Signaling Disrupts Striatal Circuits via JNK.
    Bellocchio L; Ruiz-Calvo A; Chiarlone A; Cabanas M; Resel E; Cazalets JR; Blázquez C; Cho YH; Galve-Roperh I; Guzmán M
    J Neurosci; 2016 Oct; 36(41):10611-10624. PubMed ID: 27733612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contralateral Bias of High Spatial Frequency Tuning and Cardinal Direction Selectivity in Mouse Visual Cortex.
    Salinas KJ; Figueroa Velez DX; Zeitoun JH; Kim H; Gandhi SP
    J Neurosci; 2017 Oct; 37(42):10125-10138. PubMed ID: 28924011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.