BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32977322)

  • 1. Graphene growth with no intended carbon precursor feeding into the LPCVD process: causes, solutions, and effects.
    Mirzaei M; Hedayat SM; Karimi-Sabet J; Towfighi Darain J
    Nanotechnology; 2021 Jan; 32(2):025604. PubMed ID: 32977322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable Growth of the Graphene from Millimeter-Sized Monolayer to Multilayer on Cu by Chemical Vapor Deposition.
    Liu J; Huang Z; Lai F; Lin L; Xu Y; Zuo C; Zheng W; Qu Y
    Nanoscale Res Lett; 2015 Dec; 10(1):455. PubMed ID: 26612469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst.
    Bhaviripudi S; Jia X; Dresselhaus MS; Kong J
    Nano Lett; 2010 Oct; 10(10):4128-33. PubMed ID: 20812667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous Nucleation and Growth of Graphene Flakes on Copper Foil in the Absence of External Carbon Precursor in Chemical Vapor Deposition.
    Khaksaran MH; Kaya II
    ACS Omega; 2018 Oct; 3(10):12575-12583. PubMed ID: 31457991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of Single-Crystal Graphene on Copper Foils Using a Low-Nucleation-Density Region in a Quartz Boat.
    Yang K; Liu J; Jiang R; Gong Y; Zeng B; Yi Z; Gao Q; Yang J; Chi F; Liu L
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films.
    Tao L; Lee J; Chou H; Holt M; Ruoff RS; Akinwande D
    ACS Nano; 2012 Mar; 6(3):2319-25. PubMed ID: 22314052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation-assisted graphene heteroepitaxy on copper foil.
    Reckinger N; Tang X; Joucken F; Lajaunie L; Arenal R; Dubois E; Hackens B; Henrard L; Colomer JF
    Nanoscale; 2016 Nov; 8(44):18751-18759. PubMed ID: 27790652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Parametric Study on the Influence of Synthesis and Transfer Conditions on the Quality of Graphene.
    Kumar R; Mehta BR
    J Nanosci Nanotechnol; 2017 Jan; 17(1):286-99. PubMed ID: 29620798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systematic study of atmospheric pressure chemical vapor deposition growth of large-area monolayer graphene.
    Liu L; Zhou H; Cheng R; Chen Y; Lin YC; Qu Y; Bai J; Ivanov IA; Liu G; Huang Y; Duan X
    J Mater Chem; 2012 Jan; 22(4):1498-1503. PubMed ID: 25414547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Quality Graphene Using Boudouard Reaction.
    Grebenko AK; Krasnikov DV; Bubis AV; Stolyarov VS; Vyalikh DV; Makarova AA; Fedorov A; Aitkulova A; Alekseeva AA; Gilshtein E; Bedran Z; Shmakov AN; Alyabyeva L; Mozhchil RN; Ionov AM; Gorshunov BP; Laasonen K; Podzorov V; Nasibulin AG
    Adv Sci (Weinh); 2022 Apr; 9(12):e2200217. PubMed ID: 35187847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation.
    Wang H; Wang G; Bao P; Yang S; Zhu W; Xie X; Zhang WJ
    J Am Chem Soc; 2012 Feb; 134(8):3627-30. PubMed ID: 22324740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and Manipulation of Carbon Precursor Species during Plasma Enhanced Chemical Vapor Deposition of Graphene.
    Zietz O; Olson S; Coyne B; Liu Y; Jiao J
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33187078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth mechanism of graphene on graphene films grown by chemical vapor deposition.
    Kang C; Jung DH; Lee JS
    Chem Asian J; 2015 Mar; 10(3):637-41. PubMed ID: 25655906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial Pressure Assisted Growth of Single-Layer Graphene Grown by Low-Pressure Chemical Vapor Deposition: Implications for High-Performance Graphene FET Devices.
    Sharma I; Papanai GS; Paul SJ; Gupta BK
    ACS Omega; 2020 Sep; 5(35):22109-22118. PubMed ID: 32923769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Realizing controllable graphene nucleation by regulating the competition of hydrogen and oxygen during chemical vapor deposition heating.
    Zhang H; Zhang Y; Zhang Y; Chen Z; Sui Y; Ge X; Deng R; Yu G; Jin Z; Liu X
    Phys Chem Chem Phys; 2016 Aug; 18(34):23638-42. PubMed ID: 27506467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous graphene films synthesized at low temperatures by introducing coronene as nucleation seeds.
    Wu T; Ding G; Shen H; Wang H; Sun L; Zhu Y; Jiang D; Xie X
    Nanoscale; 2013 Jun; 5(12):5456-61. PubMed ID: 23666147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of limited hydrogen and flow interval on the growth of single crystal to continuous graphene by low-pressure chemical vapor deposition.
    Borah M; Pathak AK; Singh DK; Pal P; Dhakate SR
    Nanotechnology; 2017 Feb; 28(7):075602. PubMed ID: 28084223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of Monolayer Graphene on Nanoscale Copper-Nickel Alloy Thin Films.
    Cho JH; Gorman JJ; Na SR; Cullinan M
    Carbon N Y; 2017 May; 115():441-448. PubMed ID: 28669999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Step Thermal Transformation of Multilayer Graphene Using Polymeric Carbon Source Assisted by Physical Vapor Deposited Copper.
    Huang Y; Ni J; Shi X; Wang Y; Yao S; Liu Y; Fan T
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.