These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32977322)

  • 41. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils.
    Zhang B; Lee WH; Piner R; Kholmanov I; Wu Y; Li H; Ji H; Ruoff RS
    ACS Nano; 2012 Mar; 6(3):2471-6. PubMed ID: 22339048
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of copper morphology in forming nucleation seeds for graphene growth.
    Han GH; Güneş F; Bae JJ; Kim ES; Chae SJ; Shin HJ; Choi JY; Pribat D; Lee YH
    Nano Lett; 2011 Oct; 11(10):4144-8. PubMed ID: 21863812
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cooperative island growth of large-area single-crystal graphene on copper using chemical vapor deposition.
    Eres G; Regmi M; Rouleau CM; Chen J; Ivanov IN; Puretzky AA; Geohegan DB
    ACS Nano; 2014 Jun; 8(6):5657-69. PubMed ID: 24833238
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Primary Nucleation-Dominated Chemical Vapor Deposition Growth for Uniform Graphene Monolayers on Dielectric Substrate.
    Wang H; Xue X; Jiang Q; Wang Y; Geng D; Cai L; Wang L; Xu Z; Yu G
    J Am Chem Soc; 2019 Jul; 141(28):11004-11008. PubMed ID: 31265267
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.
    Huang M; Ruoff RS
    Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low-Temperature Chemical Vapor Deposition Growth of Graphene Layers on Copper Substrate Using Camphor Precursor.
    Kavitha K; Urade AR; Kaur G; Lahiri I
    J Nanosci Nanotechnol; 2020 Dec; 20(12):7698-7704. PubMed ID: 32711645
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Growth of Continuous Monolayer Graphene with Millimeter-sized Domains Using Industrially Safe Conditions.
    Wu X; Zhong G; D'Arsié L; Sugime H; Esconjauregui S; Robertson AW; Robertson J
    Sci Rep; 2016 Feb; 6():21152. PubMed ID: 26883292
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrogen-Assisted Growth of Large-Area Continuous Films of MoS
    Chen T; Zhou Y; Sheng Y; Wang X; Zhou S; Warner JH
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7304-7314. PubMed ID: 29446624
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Selective growth of monolayer and bilayer graphene patterns by a rapid growth method.
    Lakshad Wimalananda MDS; Kim JK; Lee JM
    Nanoscale; 2019 Apr; 11(14):6727-6736. PubMed ID: 30901015
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multistep Fractionation of Coal and Application for Graphene Synthesis.
    Rane K; Adams JJ; Thode JM; Leonard BM; Huo J; Goual L
    ACS Omega; 2021 Jun; 6(25):16573-16583. PubMed ID: 34235329
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct Growth of Graphene on Insulator Using Liquid Precursor Via an Intermediate Nanostructured State Carbon Nanotube.
    Nayak PK
    Nanoscale Res Lett; 2019 Mar; 14(1):107. PubMed ID: 30903401
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rotated domains in chemical vapor deposition-grown monolayer graphene on Cu(111): an angle-resolved photoemission study.
    Jeon C; Hwang HN; Lee WG; Jung YG; Kim KS; Park CY; Hwang CC
    Nanoscale; 2013 Sep; 5(17):8210-4. PubMed ID: 23863869
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigating the CVD Synthesis of Graphene on Ge(100): toward Layer-by-Layer Growth.
    Scaparro AM; Miseikis V; Coletti C; Notargiacomo A; Pea M; De Seta M; Di Gaspare L
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33083-33090. PubMed ID: 27934132
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Epitaxial nucleation of CVD bilayer graphene on copper.
    Song Y; Zhuang J; Song M; Yin S; Cheng Y; Zhang X; Wang M; Xiang R; Xia Y; Maruyama S; Zhao P; Ding F; Wang H
    Nanoscale; 2016 Dec; 8(48):20001-20007. PubMed ID: 27858033
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A review of theoretical study of graphene chemical vapor deposition synthesis on metals: nucleation, growth, and the role of hydrogen and oxygen.
    Habib MR; Liang T; Yu X; Pi X; Liu Y; Xu M
    Rep Prog Phys; 2018 Mar; 81(3):036501. PubMed ID: 29355108
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Controlling the number of layers in graphene using the growth pressure.
    Cho JH; Na SR; Park S; Akinwande D; Liechti KM; Cullinan MA
    Nanotechnology; 2019 Jun; 30(23):235602. PubMed ID: 30780133
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pulsed-Plasma Physical Vapor Deposition Approach Toward the Facile Synthesis of Multilayer and Monolayer Graphene for Anticoagulation Applications.
    Vijayaraghavan RK; Gaman C; Jose B; McCoy AP; Cafolla T; McNally PJ; Daniels S
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4878-86. PubMed ID: 26808203
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres.
    Strudwick AJ; Weber NE; Schwab MG; Kettner M; Weitz RT; Wünsch JR; Müllen K; Sachdev H
    ACS Nano; 2015 Jan; 9(1):31-42. PubMed ID: 25398132
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In Situ Atomic Level Dynamics of Heterogeneous Nucleation and Growth of Graphene from Inorganic Nanoparticle Seeds.
    Gong C; He K; Lee GD; Chen Q; Robertson AW; Yoon E; Hong S; Warner JH
    ACS Nano; 2016 Oct; 10(10):9397-9410. PubMed ID: 27643716
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition.
    Kim KK; Hsu A; Jia X; Kim SM; Shi Y; Hofmann M; Nezich D; Rodriguez-Nieva JF; Dresselhaus M; Palacios T; Kong J
    Nano Lett; 2012 Jan; 12(1):161-6. PubMed ID: 22111957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.