These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 32977413)
1. Quantitative Analysis and Discrimination of Partially Fermented Teas from Different Origins Using Visible/Near-Infrared Spectroscopy Coupled with Chemometrics. Wu TH; Tung IC; Hsu HC; Kuo CC; Chang JH; Chen S; Tsai CY; Chuang YK Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32977413 [TBL] [Abstract][Full Text] [Related]
2. Feasibility study on identification of green, black and Oolong teas using near-infrared reflectance spectroscopy based on support vector machine (SVM). Chen Q; Zhao J; Fang CH; Wang D Spectrochim Acta A Mol Biomol Spectrosc; 2007 Mar; 66(3):568-74. PubMed ID: 16859975 [TBL] [Abstract][Full Text] [Related]
3. Tea types classification with data fusion of UV-Vis, synchronous fluorescence and NIR spectroscopies and chemometric analysis. Dankowska A; Kowalewski W Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 211():195-202. PubMed ID: 30544010 [TBL] [Abstract][Full Text] [Related]
4. Discrimination of white teas produced from fresh leaves with different maturity by near-infrared spectroscopy. Li C; Zong B; Guo H; Luo Z; He P; Gong S; Fan F Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117697. PubMed ID: 31699592 [TBL] [Abstract][Full Text] [Related]
5. Qualitative identification of tea categories by near infrared spectroscopy and support vector machine. Zhao J; Chen Q; Huang X; Fang CH J Pharm Biomed Anal; 2006 Jun; 41(4):1198-204. PubMed ID: 16621404 [TBL] [Abstract][Full Text] [Related]
6. Green analytical assay for the quality assessment of tea by using pocket-sized NIR spectrometer. Wang Y; Li M; Li L; Ning J; Zhang Z Food Chem; 2021 May; 345():128816. PubMed ID: 33316713 [TBL] [Abstract][Full Text] [Related]
7. Online System for Monitoring the Degree of Fermentation of Oolong Tea Using Integrated Visible-Near-Infrared Spectroscopy and Image-Processing Technologies. Zheng P; Solomon Adade SY; Rong Y; Zhao S; Han Z; Gong Y; Chen X; Yu J; Huang C; Lin H Foods; 2024 May; 13(11):. PubMed ID: 38890936 [TBL] [Abstract][Full Text] [Related]
8. Discrimination of Milk Freshness Based on Synchronous Two-Dimensional Visible/Near-Infrared Correlation Spectroscopy Coupled with Chemometrics. Peng D; Xu R; Zhou Q; Yue J; Su M; Zheng S; Li J Molecules; 2023 Jul; 28(15):. PubMed ID: 37570696 [TBL] [Abstract][Full Text] [Related]
9. [Discrimination of Minnan oolong tea varieties by NIR spectroscopy]. Cheng Q; Yang F; Wang DH; Lin ZY; Qiu B Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Mar; 34(3):656-9. PubMed ID: 25208385 [TBL] [Abstract][Full Text] [Related]
10. Discrimination of Trichosanthis Fructus from Different Geographical Origins Using Near Infrared Spectroscopy Coupled with Chemometric Techniques. Xu L; Sun W; Wu C; Ma Y; Chao Z Molecules; 2019 Apr; 24(8):. PubMed ID: 31010152 [TBL] [Abstract][Full Text] [Related]
11. Rapid measurement of epimedin A, epimedin B, epimedin C, icariin, and moisture in Herba Epimedii using near infrared spectroscopy. Yang Y; Liu X; Li W; Jin Y; Wu Y; Zheng J; Zhang W; Chen Y Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():351-360. PubMed ID: 27566922 [TBL] [Abstract][Full Text] [Related]
12. Fast discrimination and quantification analysis of Curcumae Radix from four botanical origins using NIR spectroscopy coupled with chemometrics tools. Wang L; Wang X; Liu X; Wang Y; Ren X; Dong Y; Song R; Ma J; Fan Q; Wei J; Yu A; Zhang L; She G Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun; 254():119626. PubMed ID: 33677207 [TBL] [Abstract][Full Text] [Related]
13. Production regions discrimination of Huangguanyin oolong tea by using the content of chemical components and rare earth elements. Shao S; Xu M; Liao X; Luo Q; Lin Y; Wang P; Fang D; Huang Y; Jin S; Ye N Food Res Int; 2023 Mar; 165():112522. PubMed ID: 36869522 [TBL] [Abstract][Full Text] [Related]
14. On the use of the fluorescence, ultraviolet-visible and near infrared spectroscopy with chemometrics for the discrimination between plum brandies of different varietal origins. Jakubíková M; Sádecká J; Kleinová A Food Chem; 2018 Jan; 239():889-897. PubMed ID: 28873649 [TBL] [Abstract][Full Text] [Related]
15. [Determination of soluble solids content in Nanfeng Mandarin by Vis/NIR spectroscopy and UVE-ICA-LS-SVM]. Sun T; Xu WL; Hu T; Liu MH Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Dec; 33(12):3235-9. PubMed ID: 24611377 [TBL] [Abstract][Full Text] [Related]
16. Distinguishing Different Varieties of Oolong Tea by Fluorescence Hyperspectral Technology Combined with Chemometrics. Hu Y; Wu Y; Sun J; Geng J; Fan R; Kang Z Foods; 2022 Aug; 11(15):. PubMed ID: 35954110 [TBL] [Abstract][Full Text] [Related]
17. Rapid discrimination of the geographical origins of an oolong tea (anxi-tieguanyin) by near-infrared spectroscopy and partial least squares discriminant analysis. Yan SM; Liu JP; Xu L; Fu XS; Cui HF; Yun ZY; Yu XP; Ye ZH J Anal Methods Chem; 2014; 2014():704971. PubMed ID: 25054075 [TBL] [Abstract][Full Text] [Related]
18. A weighted twin support vector machine as a potential discriminant analysis tool and evaluation of its performance for near-infrared spectroscopic discrimination of the geographical origins of diverse agricultural products. Jang D; Sohng W; Cha K; Chung H Talanta; 2022 Jan; 237():122973. PubMed ID: 34736696 [TBL] [Abstract][Full Text] [Related]
19. Mass spectrometry-based metabolomics and chemometric analysis of Pu-erh teas of various origins. Wang T; Li X; Yang H; Wang F; Kong J; Qiu D; Li Z Food Chem; 2018 Dec; 268():271-278. PubMed ID: 30064758 [TBL] [Abstract][Full Text] [Related]
20. Discrimination of Chinese teas with different fermentation degrees by stepwise linear discriminant analysis (S-LDA) of the chemical compounds. Wu QJ; Dong QH; Sun WJ; Huang Y; Wang QQ; Zhou WL J Agric Food Chem; 2014 Sep; 62(38):9336-44. PubMed ID: 25211192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]