These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Cytokine analysis on a countable number of molecules from living single cells on nanofluidic devices. Nakao T; Kazoe Y; Mori E; Morikawa K; Fukasawa T; Yoshizaki A; Kitamori T Analyst; 2019 Dec; 144(24):7200-7208. PubMed ID: 31691693 [TBL] [Abstract][Full Text] [Related]
5. Nanofluidics: A New Arena for Materials Science. Xu Y Adv Mater; 2018 Jan; 30(3):. PubMed ID: 29094401 [TBL] [Abstract][Full Text] [Related]
6. Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels. Fritzsche J; Albinsson D; Fritzsche M; Antosiewicz TJ; Westerlund F; Langhammer C Nano Lett; 2016 Dec; 16(12):7857-7864. PubMed ID: 27960495 [TBL] [Abstract][Full Text] [Related]
7. Single-Molecule Electrical Detection: A Promising Route toward the Fundamental Limits of Chemistry and Life Science. Li Y; Yang C; Guo X Acc Chem Res; 2020 Jan; 53(1):159-169. PubMed ID: 31545589 [TBL] [Abstract][Full Text] [Related]
8. Concentration Determination at a Countable Molecular Level in Nanofluidics by Solvent-Enhanced Photothermal Optical Diffraction. Tsuyama Y; Mawatari K Anal Chem; 2020 Nov; 92(21):14366-14372. PubMed ID: 33079525 [TBL] [Abstract][Full Text] [Related]
9. Flow of DNA in micro/nanofluidics: From fundamentals to applications. Rems L; Kawale D; Lee LJ; Boukany PE Biomicrofluidics; 2016 Jul; 10(4):043403. PubMed ID: 27493701 [TBL] [Abstract][Full Text] [Related]
10. Nanoplasmonic-Nanofluidic Single-Molecule Biosensors for Ultrasmall Sample Volumes. Špačková B; Šípová-Jungová H; Käll M; Fritzsche J; Langhammer C ACS Sens; 2021 Jan; 6(1):73-82. PubMed ID: 33370091 [TBL] [Abstract][Full Text] [Related]
11. Nanofluidic crystals: nanofluidics in a close-packed nanoparticle array. Ouyang W; Han J; Wang W Lab Chip; 2017 Sep; 17(18):3006-3025. PubMed ID: 28752878 [TBL] [Abstract][Full Text] [Related]
12. Handling and Sensing of Single Enzyme Molecules: From Fluorescence Detection towards Nanoscale Electrical Measurements. Mathwig K; Chi Q; Lemay SG; Rassaei L Chemphyschem; 2016 Feb; 17(4):452-7. PubMed ID: 26458730 [TBL] [Abstract][Full Text] [Related]
13. Recent advances in single-molecule detection on micro- and nano-fluidic devices. Liu C; Qu Y; Luo Y; Fang N Electrophoresis; 2011 Nov; 32(23):3308-18. PubMed ID: 22134976 [TBL] [Abstract][Full Text] [Related]
14. Scalable integration of nano-, and microfluidics with hybrid two-photon lithography. Vanderpoorten O; Peter Q; Challa PK; Keyser UF; Baumberg J; Kaminski CF; Knowles TPJ Microsyst Nanoeng; 2019; 5():40. PubMed ID: 31636930 [TBL] [Abstract][Full Text] [Related]
15. Field effect nanofluidics. Prakash S; Conlisk AT Lab Chip; 2016 Oct; 16(20):3855-3865. PubMed ID: 27713981 [TBL] [Abstract][Full Text] [Related]
16. Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber. Faez S; Lahini Y; Weidlich S; Garmann RF; Wondraczek K; Zeisberger M; Schmidt MA; Orrit M; Manoharan VN ACS Nano; 2015 Dec; 9(12):12349-57. PubMed ID: 26505649 [TBL] [Abstract][Full Text] [Related]
18. Integration of sequential analytical processes into sub-100 nm channels: volumetric sampling, chromatographic separation, and label-free molecule detection. Tsuyama Y; Morikawa K; Mawatari K Nanoscale; 2021 May; 13(19):8855-8863. PubMed ID: 33949427 [TBL] [Abstract][Full Text] [Related]
19. Detection of zeptomole quantities of nonfluorescent molecules in a 10(1) nm nanochannel by thermal lens microscopy. Le TH; Mawatari K; Shimizu H; Kitamori T Analyst; 2014 Jun; 139(11):2721-5. PubMed ID: 24759977 [TBL] [Abstract][Full Text] [Related]
20. Ion transport in nanofluidics under external fields. Liu P; Kong XY; Jiang L; Wen L Chem Soc Rev; 2024 Mar; 53(6):2972-3001. PubMed ID: 38345093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]