These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. An Adaptive Human-Robotic Interaction Architecture for Augmenting Surgery Performance Using Real-Time Workload Sensing-Demonstration of a Semi-autonomous Suction Tool. Yang J; Barragan JA; Farrow JM; Sundaram CP; Wachs JP; Yu D Hum Factors; 2024 Apr; 66(4):1081-1102. PubMed ID: 36367971 [TBL] [Abstract][Full Text] [Related]
4. Development and validation of a behavioural video coding scheme for detecting mental workload in manual assembly. Van Acker BB; Parmentier DD; Conradie PD; Van Hove S; Biondi A; Bombeke K; Vlerick P; Saldien J Ergonomics; 2021 Jan; 64(1):78-102. PubMed ID: 32813584 [TBL] [Abstract][Full Text] [Related]
5. Overload and automation-dependence in a multi-UAS simulation: Task demand and individual difference factors. Lin J; Matthews G; Wohleber RW; Funke GJ; Calhoun GL; Ruff HA; Szalma J; Chiu P J Exp Psychol Appl; 2020 Jun; 26(2):218-235. PubMed ID: 31621357 [TBL] [Abstract][Full Text] [Related]
6. Facilitating the Work of Unmanned Aerial Vehicle Operators Using Artificial Intelligence: An Intelligent Filter for Command-and-Control Maps to Reduce Cognitive Workload. Zak Y; Parmet Y; Oron-Gilad T Hum Factors; 2023 Nov; 65(7):1345-1360. PubMed ID: 35392697 [TBL] [Abstract][Full Text] [Related]
7. Vigilance and Automation Dependence in Operation of Multiple Unmanned Aerial Systems (UAS): A Simulation Study. Wohleber RW; Matthews G; Lin J; Szalma JL; Calhoun GL; Funke GJ; Chiu CP; Ruff HA Hum Factors; 2019 May; 61(3):488-505. PubMed ID: 30265579 [TBL] [Abstract][Full Text] [Related]
8. A Systematic Review of Physiological Measures of Mental Workload. Tao D; Tan H; Wang H; Zhang X; Qu X; Zhang T Int J Environ Res Public Health; 2019 Jul; 16(15):. PubMed ID: 31366058 [TBL] [Abstract][Full Text] [Related]
9. Determining Cognitive Workload Using Physiological Measurements: Pupillometry and Heart-Rate Variability. Ma X; Monfared R; Grant R; Goh YM Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544272 [TBL] [Abstract][Full Text] [Related]
10. Developing operator capacity estimates for supervisory control of autonomous vehicles. Cummings ML; Guerlain S Hum Factors; 2007 Feb; 49(1):1-15. PubMed ID: 17315838 [TBL] [Abstract][Full Text] [Related]
11. Embedding Human Expert Cognition Into Autonomous UAS Trajectory Planning. Narayan P; Meyer P; Campbell D IEEE Trans Cybern; 2013 Apr; 43(2):530-43. PubMed ID: 22949071 [TBL] [Abstract][Full Text] [Related]
12. Embedded Computation Architectures for Autonomy in Unmanned Aircraft Systems (UAS). Mejias L; Diguet JP; Dezan C; Campbell D; Kok J; Coppin G Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562676 [TBL] [Abstract][Full Text] [Related]
13. Gaming experience predicts UAS operator performance and workload in simulated search and rescue missions. Ferraro JC; Mouloua M; Mangos PM; Matthews G Ergonomics; 2022 Dec; 65(12):1659-1671. PubMed ID: 35297326 [TBL] [Abstract][Full Text] [Related]
14. Using machine learning methods and EEG to discriminate aircraft pilot cognitive workload during flight. Taheri Gorji H; Wilson N; VanBree J; Hoffmann B; Petros T; Tavakolian K Sci Rep; 2023 Feb; 13(1):2507. PubMed ID: 36782004 [TBL] [Abstract][Full Text] [Related]
15. Operator selection for unmanned aerial systems: comparing video game players and pilots. McKinley RA; McIntire LK; Funke MA Aviat Space Environ Med; 2011 Jun; 82(6):635-42. PubMed ID: 21702315 [TBL] [Abstract][Full Text] [Related]
16. A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management. Hocraffer A; Nam CS Appl Ergon; 2017 Jan; 58():66-80. PubMed ID: 27633199 [TBL] [Abstract][Full Text] [Related]
17. Combining cognitive work analysis and empirical evaluations to understand map use by operators of small carry-on unmanned aerial systems. Back Y; Zak Y; Parmet Y; Oron-Gilad T Appl Ergon; 2021 Jan; 90():103218. PubMed ID: 32854065 [TBL] [Abstract][Full Text] [Related]
18. Adaptive Human-Robotic Interaction forĀ Robotic-assisted Surgical Settings. Yang J; Layadi IC; Wachs JP; Yu D Mil Med; 2023 Nov; 188(Suppl 6):480-487. PubMed ID: 37948270 [TBL] [Abstract][Full Text] [Related]
19. Mission control of multiple unmanned aerial vehicles: a workload analysis. Dixon SR; Wickens CD; Chang D Hum Factors; 2005; 47(3):479-87. PubMed ID: 16435690 [TBL] [Abstract][Full Text] [Related]
20. Context-Dependent Cognitive Workload Monitoring using Pupillometry for Control Room Operators to Prevent Overload. Bhavsar P IISE Trans Occup Ergon Hum Factors; 2022; 10(2):91-103. PubMed ID: 35575073 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]