BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 32977769)

  • 1. Mitochondrial-nuclear coadaptation revealed through mtDNA replacements in Saccharomyces cerevisiae.
    Nguyen THM; Sondhi S; Ziesel A; Paliwal S; Fiumera HL
    BMC Evol Biol; 2020 Sep; 20(1):128. PubMed ID: 32977769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial-nuclear epistasis contributes to phenotypic variation and coadaptation in natural isolates of Saccharomyces cerevisiae.
    Paliwal S; Fiumera AC; Fiumera HL
    Genetics; 2014 Nov; 198(3):1251-65. PubMed ID: 25164882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of mitonuclear incompatibilities in allopatric speciation.
    Burton RS
    Cell Mol Life Sci; 2022 Jan; 79(2):103. PubMed ID: 35091831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping mitonuclear epistasis using a novel recombinant yeast population.
    Nguyen THM; Tinz-Burdick A; Lenhardt M; Geertz M; Ramirez F; Schwartz M; Toledano M; Bonney B; Gaebler B; Liu W; Wolters JF; Chiu K; Fiumera AC; Fiumera HL
    PLoS Genet; 2023 Mar; 19(3):e1010401. PubMed ID: 36989278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitonuclear Interactions Mediate Transcriptional Responses to Hypoxia in Drosophila.
    Mossman JA; Tross JG; Jourjine NA; Li N; Wu Z; Rand DM
    Mol Biol Evol; 2017 Feb; 34(2):447-466. PubMed ID: 28110272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial Recombination Reveals Mito-Mito Epistasis in Yeast.
    Wolters JF; Charron G; Gaspary A; Landry CR; Fiumera AC; Fiumera HL
    Genetics; 2018 May; 209(1):307-319. PubMed ID: 29531011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitonuclear epistasis, genotype-by-environment interactions, and personalized genomics of complex traits in Drosophila.
    Rand DM; Mossman JA; Zhu L; Biancani LM; Ge JY
    IUBMB Life; 2018 Dec; 70(12):1275-1288. PubMed ID: 30394643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct and indirect genetic effects of sex-specific mitonuclear epistasis on reproductive ageing.
    Immonen E; Collet M; Goenaga J; Arnqvist G
    Heredity (Edinb); 2016 Mar; 116(3):338-47. PubMed ID: 26732015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary Trajectories are Contingent on Mitonuclear Interactions.
    Biot-Pelletier D; Bettinazzi S; Gagnon-Arsenault I; Dubé AK; Bédard C; Nguyen THM; Fiumera HL; Breton S; Landry CR
    Mol Biol Evol; 2023 Apr; 40(4):. PubMed ID: 36929911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondria as environments for the nuclear genome in Drosophila: mitonuclear G×G×E.
    Rand DM; Mossman JA; Spierer AN; Santiago JA
    J Hered; 2022 Feb; 113(1):37-47. PubMed ID: 34964900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear-mitochondrial epistasis and drosophila aging: introgression of Drosophila simulans mtDNA modifies longevity in D. melanogaster nuclear backgrounds.
    Rand DM; Fry A; Sheldahl L
    Genetics; 2006 Jan; 172(1):329-41. PubMed ID: 16219776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the fitness consequences of mitonuclear interactions in natural populations.
    Hill GE; Havird JC; Sloan DB; Burton RS; Greening C; Dowling DK
    Biol Rev Camb Philos Soc; 2019 Jun; 94(3):1089-1104. PubMed ID: 30588726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic Signatures of Mitonuclear Coevolution in Mammals.
    Weaver RJ; Rabinowitz S; Thueson K; Havird JC
    Mol Biol Evol; 2022 Nov; 39(11):. PubMed ID: 36288802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconciling the Mitonuclear Compatibility Species Concept with Rampant Mitochondrial Introgression.
    Hill GE
    Integr Comp Biol; 2019 Oct; 59(4):912-924. PubMed ID: 30937430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong selective effects of mitochondrial DNA on the nuclear genome.
    Healy TM; Burton RS
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6616-6621. PubMed ID: 32156736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitonuclear Epistasis for Development Time and Its Modification by Diet in Drosophila.
    Mossman JA; Biancani LM; Zhu CT; Rand DM
    Genetics; 2016 May; 203(1):463-84. PubMed ID: 26966258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitonuclear Mate Choice: A Missing Component of Sexual Selection Theory?
    Hill GE
    Bioessays; 2018 Mar; 40(3):. PubMed ID: 29405334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap.
    Hill GE
    Ecol Evol; 2016 Aug; 6(16):5831-42. PubMed ID: 27547358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila.
    Mossman JA; Tross JG; Li N; Wu Z; Rand DM
    Genetics; 2016 Oct; 204(2):613-630. PubMed ID: 27558138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pervasive Mitonuclear Coadaptation Underlies Fast Development in Interpopulation Hybrids of a Marine Crustacean.
    Han KL; Barreto FS
    Genome Biol Evol; 2021 Mar; 13(3):. PubMed ID: 33502469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.