These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32977795)

  • 1. Diagnosis of left ventricular hypertrophy using convolutional neural network.
    Jian Z; Wang X; Zhang J; Wang X; Deng Y
    BMC Med Inform Decis Mak; 2020 Sep; 20(1):243. PubMed ID: 32977795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of active contour and convolutional neural network in rapid left-ventricle volume quantification using echocardiographic imaging.
    Zhu X; Wei Y; Lu Y; Zhao M; Yang K; Wu S; Zhang H; Wong KKL
    Comput Methods Programs Biomed; 2021 Feb; 199():105914. PubMed ID: 33383330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy With Cardiovascular Deep Learning.
    Duffy G; Cheng PP; Yuan N; He B; Kwan AC; Shun-Shin MJ; Alexander KM; Ebinger J; Lungren MP; Rader F; Liang DH; Schnittger I; Ashley EA; Zou JY; Patel J; Witteles R; Cheng S; Ouyang D
    JAMA Cardiol; 2022 Apr; 7(4):386-395. PubMed ID: 35195663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial neural network: border detection in echocardiography.
    Wu EJ; De Andrade ML; Nicolosi DE; Pontes SC
    Med Biol Eng Comput; 2008 Sep; 46(9):841-8. PubMed ID: 18626675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Usefulness of two-dimensional and speckle tracking echocardiography in "Gray Zone" left ventricular hypertrophy to differentiate professional football player's heart from hypertrophic cardiomyopathy.
    Kansal MM; Lester SJ; Surapaneni P; Sengupta PP; Appleton CP; Ommen SR; Ressler SW; Hurst RT
    Am J Cardiol; 2011 Nov; 108(9):1322-6. PubMed ID: 21855830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Left ventricular non-compaction cardiomyopathy automatic diagnosis using a deep learning approach.
    Rodríguez-de-Vera JM; Bernabé G; García JM; Saura D; González-Carrillo J
    Comput Methods Programs Biomed; 2022 Feb; 214():106548. PubMed ID: 34861618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Convolutional Neural Network Combining Discriminative Dictionary Learning and Sequence Tracking for Left Ventricular Detection.
    Wang X; Wang F; Niu Y
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture.
    Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z
    Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel solution of using deep learning for left ventricle detection: Enhanced feature extraction.
    Sharma K; Alsadoon A; Prasad PWC; Al-Dala'in T; Nguyen TQV; Pham DTH
    Comput Methods Programs Biomed; 2020 Dec; 197():105751. PubMed ID: 32957061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully Automatic initialization and segmentation of left and right ventricles for large-scale cardiac MRI using a deeply supervised network and 3D-ASM.
    Hu H; Pan N; Frangi AF
    Comput Methods Programs Biomed; 2023 Oct; 240():107679. PubMed ID: 37364366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images.
    Zabihollahy F; White JA; Ukwatta E
    Med Phys; 2019 Apr; 46(4):1740-1751. PubMed ID: 30734937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Semi-automatic measurement of the left ventricular mass from tomodensitometric traces of the left ventricle].
    Gosse P; Mansour S; Dubourg O; Gueret P; Massonneau M
    Arch Mal Coeur Vaiss; 1999 Aug; 92(8):961-3. PubMed ID: 10486646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Echocardiographic measurement of left ventricular mass associating data of the M and 2D modes].
    Gosse P; Ansoborlo P; Delest MF; Lemetayer P; Clémenty J
    Arch Mal Coeur Vaiss; 1997 Jul; 90(7):919-25. PubMed ID: 9339252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semi-automatic algorithm for construction of the left ventricular area variation curve over a complete cardiac cycle.
    Melo SA; Macchiavello B; Andrade MM; Carvalho JL; Carvalho HS; Vasconcelos DF; Berger PA; da Rocha AF; Nascimento FA
    Biomed Eng Online; 2010 Jan; 9():5. PubMed ID: 20078864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative studies of deep learning segmentation models for left ventricle segmentation.
    Shoaib MA; Lai KW; Chuah JH; Hum YC; Ali R; Dhanalakshmi S; Wang H; Wu X
    Front Public Health; 2022; 10():981019. PubMed ID: 36091529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Quantitative determination of left ventricular size using echocardiography].
    Hůla J
    Vnitr Lek; 1994 Jan; 40(1):44-7. PubMed ID: 8140751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Medical computer-aided detection method based on deep learning].
    Tao P; Fu Z; Zhu K; Wang L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2018 Jun; 35(3):368-375. PubMed ID: 29938943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography.
    Narula S; Shameer K; Salem Omar AM; Dudley JT; Sengupta PP
    J Am Coll Cardiol; 2016 Nov; 68(21):2287-2295. PubMed ID: 27884247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional echocardiography: in vitro and in vivo validation of left ventricular mass and comparison with conventional echocardiographic methods.
    Gopal AS; Keller AM; Shen Z; Sapin PM; Schroeder KM; King DL; King DL
    J Am Coll Cardiol; 1994 Aug; 24(2):504-13. PubMed ID: 8034889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic left ventricle volume calculation with explainability through a deep learning weak-supervision methodology.
    Pérez-Pelegrí M; Monmeneu JV; López-Lereu MP; Pérez-Pelegrí L; Maceira AM; Bodí V; Moratal D
    Comput Methods Programs Biomed; 2021 Sep; 208():106275. PubMed ID: 34274609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.