These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 32977795)
21. Automatic left ventricle volume calculation with explainability through a deep learning weak-supervision methodology. Pérez-Pelegrí M; Monmeneu JV; López-Lereu MP; Pérez-Pelegrí L; Maceira AM; Bodí V; Moratal D Comput Methods Programs Biomed; 2021 Sep; 208():106275. PubMed ID: 34274609 [TBL] [Abstract][Full Text] [Related]
22. Segmentation of left ventricle in short-axis echocardiographic sequences by weighted radial edge filtering and adaptive recovery of dropout regions. Bansod P; Desai UB; Merchant SN; Burkule N Comput Methods Biomech Biomed Engin; 2011 Jul; 14(7):603-13. PubMed ID: 21390933 [TBL] [Abstract][Full Text] [Related]
23. [Morphologic changes in the interventricular septum and the posterior wall of the left ventricle in patients on hemodialysis]. Nuhbegović S; Halilbasić A; Karamehić J; Halilović E; Merić M Med Arh; 2000; 54(2):69-70. PubMed ID: 10934830 [TBL] [Abstract][Full Text] [Related]
24. Dobutamine-atropine stress echocardiography for the detection of coronary artery disease in patients with left ventricular hypertrophy. Importance of chamber size and systolic wall stress. Smart SC; Knickelbine T; Malik F; Sagar KB Circulation; 2000 Jan; 101(3):258-63. PubMed ID: 10645921 [TBL] [Abstract][Full Text] [Related]
25. A spatio-temporal graph convolutional network for ultrasound echocardiographic landmark detection. Li H; Yang J; Xuan Z; Qu M; Wang Y; Feng C Med Image Anal; 2024 Oct; 97():103272. PubMed ID: 39024972 [TBL] [Abstract][Full Text] [Related]
26. QT interval, general mortality and the role of echocardiographic parameters of left ventricular hypertrophy: Results from the prospective, population-based CARLA study. Medenwald D; Kluttig A; Kors JA; Nuding S; Tiller D; Greiser KH; Werdan K; Haerting J Eur J Prev Cardiol; 2016 Mar; 23(4):428-36. PubMed ID: 25997941 [TBL] [Abstract][Full Text] [Related]
27. Automated Recognition of Regional Wall Motion Abnormalities Through Deep Neural Network Interpretation of Transthoracic Echocardiography. Huang MS; Wang CS; Chiang JH; Liu PY; Tsai WC Circulation; 2020 Oct; 142(16):1510-1520. PubMed ID: 32964749 [TBL] [Abstract][Full Text] [Related]
28. Comparison of M-mode echocardiography and angiography in the evaluation of left ventricular hypertrophy. Hradec J; Aschermann M; Vancura J; Petrásek J; Drechslerová J; Michaljanic A; Jezek V Cor Vasa; 1986; 28(5):341-9. PubMed ID: 2947778 [TBL] [Abstract][Full Text] [Related]
29. Automatic left ventricle segmentation in short-axis MRI using deep convolutional neural networks and central-line guided level set approach. Xie L; Song Y; Chen Q Comput Biol Med; 2020 Jul; 122():103877. PubMed ID: 32658742 [TBL] [Abstract][Full Text] [Related]
30. A data-efficient zero-shot and few-shot Siamese approach for automated diagnosis of left ventricular hypertrophy. Farhad M; Masud MM; Beg A; Ahmad A; Ahmed LA; Memon S Comput Biol Med; 2023 Sep; 163():107129. PubMed ID: 37343469 [TBL] [Abstract][Full Text] [Related]
31. Tracking the left ventricle in echocardiographic images by learning heart dynamics. Malassiotis S; Strintzis MG IEEE Trans Med Imaging; 1999 Mar; 18(3):282-90. PubMed ID: 10363706 [TBL] [Abstract][Full Text] [Related]
32. Two-dimensional echocardiography with a 15-MHz transducer is a promising alternative for in vivo measurement of left ventricular mass in mice. Youn HJ; Rokosh G; Lester SJ; Simpson P; Schiller NB; Foster E J Am Soc Echocardiogr; 1999 Jan; 12(1):70-5. PubMed ID: 9882781 [TBL] [Abstract][Full Text] [Related]
33. Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients. Klues HG; Schiffers A; Maron BJ J Am Coll Cardiol; 1995 Dec; 26(7):1699-708. PubMed ID: 7594106 [TBL] [Abstract][Full Text] [Related]
34. Segmentation of Fetal Left Ventricle in Echocardiographic Sequences Based on Dynamic Convolutional Neural Networks. Yu L; Guo Y; Wang Y; Yu J; Chen P IEEE Trans Biomed Eng; 2017 Aug; 64(8):1886-1895. PubMed ID: 28113289 [TBL] [Abstract][Full Text] [Related]
35. Differentiation of hypertrophic cardiomyopathy from other forms of left ventricular hypertrophy by means of three-dimensional echocardiography. Caselli S; Pelliccia A; Maron M; Santini D; Puccio D; Marcantonio A; Pandian NG; De Castro S Am J Cardiol; 2008 Sep; 102(5):616-20. PubMed ID: 18721523 [TBL] [Abstract][Full Text] [Related]
36. Cardiac Segmentation Method Based on Domain Knowledge. Wang Y; Chen W; Tang T; Xie W; Jiang Y; Zhang H; Zhou X; Yuan K Ultrason Imaging; 2022 May; 44(2-3):105-117. PubMed ID: 35574925 [TBL] [Abstract][Full Text] [Related]
37. MAEF-Net: Multi-attention efficient feature fusion network for left ventricular segmentation and quantitative analysis in two-dimensional echocardiography. Zeng Y; Tsui PH; Pang K; Bin G; Li J; Lv K; Wu X; Wu S; Zhou Z Ultrasonics; 2023 Jan; 127():106855. PubMed ID: 36206610 [TBL] [Abstract][Full Text] [Related]
38. Left Ventricular Mass and Thickness: Why Does It Matter? Dini FL; Galeotti GG; Terlizzese G; Fabiani I; Pugliese NR; Rovai I Heart Fail Clin; 2019 Apr; 15(2):159-166. PubMed ID: 30832808 [TBL] [Abstract][Full Text] [Related]
39. Left ventricular twisting modifications in patients with left ventricular concentric hypertrophy at increasing after-load conditions. Santoro A; Alvino F; Antonelli G; Zacà V; Benincasa S; Lunghetti S; Mondillo S Echocardiography; 2014 Nov; 31(10):1265-73. PubMed ID: 24649936 [TBL] [Abstract][Full Text] [Related]
40. An improved method for automatic segmentation of the left ventricle in myocardial perfusion SPECT. Soneson H; Ubachs JF; Ugander M; Arheden H; Heiberg E J Nucl Med; 2009 Feb; 50(2):205-13. PubMed ID: 19164235 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]