These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 32977911)

  • 1. Wearable sensor validation of sports-related movements for the lower extremity and trunk.
    Dahl KD; Dunford KM; Wilson SA; Turnbull TL; Tashman S
    Med Eng Phys; 2020 Oct; 84():144-150. PubMed ID: 32977911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the validity and reliability of inertial measurement units for determining knee and trunk kinematics during athletic landing and cutting movements.
    Chia L; Andersen JT; McKay MJ; Sullivan J; Megalaa T; Pappas E
    J Electromyogr Kinesiol; 2021 Oct; 60():102589. PubMed ID: 34418582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Nonproprietary Movement Analysis System (MoJoXlab) Based on Wearable Inertial Measurement Units Applicable to Healthy Participants and Those With Anterior Cruciate Ligament Reconstruction Across a Range of Complex Tasks: Validation Study.
    Islam R; Bennasar M; Nicholas K; Button K; Holland S; Mulholland P; Price B; Al-Amri M
    JMIR Mhealth Uhealth; 2020 Jun; 8(6):e17872. PubMed ID: 32543446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Validity of Wireless Earbud-Type Wearable Sensors for Head Angle Estimation and the Relationships of Head with Trunk, Pelvis, Hip, and Knee during Workouts.
    Kim AR; Park JH; Kim SH; Kim KB; Park KN
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of wearable inertial sensor-based gait analysis system for measurement of spatiotemporal parameters and lower extremity joint kinematics in sagittal plane.
    Patel G; Mullerpatan R; Agarwal B; Shetty T; Ojha R; Shaikh-Mohammed J; Sujatha S
    Proc Inst Mech Eng H; 2022 May; 236(5):686-696. PubMed ID: 35001713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements.
    Teufl W; Miezal M; Taetz B; Fröhlich M; Bleser G
    PLoS One; 2019; 14(2):e0213064. PubMed ID: 30817787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D trunk orientation measured using inertial measurement units during anatomical and dynamic sports motions.
    Brouwer NP; Yeung T; Bobbert MF; Besier TF
    Scand J Med Sci Sports; 2021 Feb; 31(2):358-370. PubMed ID: 33038047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lower Limb Kinematics Using Inertial Sensors during Locomotion: Accuracy and Reproducibility of Joint Angle Calculations with Different Sensor-to-Segment Calibrations.
    Lebleu J; Gosseye T; Detrembleur C; Mahaudens P; Cartiaux O; Penta M
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32012906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reliability and Validity of an Inertial Measurement System to Quantify Lower Extremity Joint Angle in Functional Movements.
    Shuai Z; Dong A; Liu H; Cui Y
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematics and temporospatial parameters during gait from inertial motion capture in adults with and without HIV: a validity and reliability study.
    Berner K; Cockcroft J; Louw Q
    Biomed Eng Online; 2020 Jul; 19(1):57. PubMed ID: 32709239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of the Perception Neuron system for full-body motion capture.
    Choo CZY; Chow JY; Komar J
    PLoS One; 2022; 17(1):e0262730. PubMed ID: 35061781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial Measurement Unit Sensor-to-Segment Calibration Comparison for Sport-Specific Motion Analysis.
    Ekdahl M; Loewen A; Erdman A; Sahin S; Ulman S
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of IMU against optical reference and development of open-source pipeline: proof of concept case report in a participant with transfemoral amputation fitted with a Percutaneous Osseointegrated Implant.
    Ahmed K; Taheri S; Weygers I; Ortiz-Catalan M
    J Neuroeng Rehabil; 2024 Jul; 21(1):128. PubMed ID: 39085954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating Lower Limb Kinematics Using a Lie Group Constrained Extended Kalman Filter with a Reduced Wearable IMU Count and Distance Measurements.
    Sy LWF; Lovell NH; Redmond SJ
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of IMU Sensor Placement for the Measurement of Lower Limb Joint Kinematics.
    Niswander W; Wang W; Kontson K
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33105876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of an Inertial Sensor Algorithm to Quantify Head and Trunk Movement in Healthy Young Adults and Individuals with Mild Traumatic Brain Injury.
    Parrington L; Jehu DA; Fino PC; Pearson S; El-Gohary M; King LA
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30572640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of an IMU Suit for Military-Based Tasks.
    Mavor MP; Ross GB; Clouthier AL; Karakolis T; Graham RB
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraction and Analysis of Respiratory Motion Using Wearable Inertial Sensor System during Trunk Motion.
    Gaidhani A; Moon KS; Ozturk Y; Lee SQ; Youm W
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29258214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concurrent validity and within-session reliability of gait kinematics measured using an inertial motion capture system with repeated calibration.
    Berner K; Cockcroft J; Morris LD; Louw Q
    J Bodyw Mov Ther; 2020 Oct; 24(4):251-260. PubMed ID: 33218520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variations in Concurrent Validity of Two Independent Inertial Measurement Units Compared to Gold Standard for Upper Body Posture during Computerised Device Use.
    Lee R; Akhundov R; James C; Edwards S; Snodgrass SJ
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.