These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 32978134)
1. Possible Involvement of a Tetrathionate Reductase Homolog in Dissimilatory Arsenate Reduction by Muramatsu F; Tonomura M; Yamada M; Kasahara Y; Yamamura S; Iino T; Amachi S Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978134 [No Abstract] [Full Text] [Related]
2. Expression of Genes and Proteins Involved in Arsenic Respiration and Resistance in Dissimilatory Arsenate-Reducing Tsuchiya T; Ehara A; Kasahara Y; Hamamura N; Amachi S Appl Environ Microbiol; 2019 Jul; 85(14):. PubMed ID: 31101608 [TBL] [Abstract][Full Text] [Related]
3. Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1. Kudo K; Yamaguchi N; Makino T; Ohtsuka T; Kimura K; Dong DT; Amachi S Appl Environ Microbiol; 2013 Aug; 79(15):4635-42. PubMed ID: 23709511 [TBL] [Abstract][Full Text] [Related]
4. Identification of bacterial dissimilatory antimonate reductase AnrA: genes and proteins involved in antimonate respiration and resistance in Kambara R; Yamamura S; Amachi S Appl Environ Microbiol; 2024 Mar; 90(3):e0172923. PubMed ID: 38411083 [No Abstract] [Full Text] [Related]
5. Arsenate-dependent growth is independent of an ArrA mechanism of arsenate respiration in the termite hindgut isolate Citrobacter sp. strain TSA-1. Blum JS; Hernandez-Maldonado J; Redford K; Sing C; Bennett SC; Saltikov CW; Oremland RS Can J Microbiol; 2018 Sep; 64(9):619-627. PubMed ID: 30169127 [TBL] [Abstract][Full Text] [Related]
6. The genetic basis of tetrathionate respiration in Salmonella typhimurium. Hensel M; Hinsley AP; Nikolaus T; Sawers G; Berks BC Mol Microbiol; 1999 Apr; 32(2):275-87. PubMed ID: 10231485 [TBL] [Abstract][Full Text] [Related]
7. Energy metabolism and multiple respiratory pathways revealed by genome sequencing of Desulfurispirillum indicum strain S5. Rauschenbach I; Yee N; Häggblom MM; Bini E Environ Microbiol; 2011 Jun; 13(6):1611-21. PubMed ID: 21450009 [TBL] [Abstract][Full Text] [Related]
9. Draft Genome Sequence of Anaeromyxobacter sp. Strain PSR-1, an Arsenate-Respiring Bacterium Isolated from Arsenic-Contaminated Soil. Tonomura M; Ehara A; Suzuki H; Amachi S Genome Announc; 2015 May; 3(3):. PubMed ID: 25977440 [TBL] [Abstract][Full Text] [Related]
10. Sulfate enhances the dissimilatory arsenate-respiring prokaryotes-mediated mobilization, reduction and release of insoluble arsenic and iron from the arsenic-rich sediments into groundwater. Wang J; Zeng XC; Zhu X; Chen X; Zeng X; Mu Y; Yang Y; Wang Y J Hazard Mater; 2017 Oct; 339():409-417. PubMed ID: 28686931 [TBL] [Abstract][Full Text] [Related]
11. Functional roles of arcA, etrA, cyclic AMP (cAMP)-cAMP receptor protein, and cya in the arsenate respiration pathway in Shewanella sp. strain ANA-3. Murphy JN; Durbin KJ; Saltikov CW J Bacteriol; 2009 Feb; 191(3):1035-43. PubMed ID: 19060154 [TBL] [Abstract][Full Text] [Related]
12. Single Strain-Triggered Biogeochemical Cycle of Arsenic. Min D; Cheng L; Liu DF; Liu JQ; Li WW; Yu HQ Environ Sci Technol; 2022 Nov; 56(22):16410-16418. PubMed ID: 36268776 [TBL] [Abstract][Full Text] [Related]
13. Environmental Mn(II) enhances the activity of dissimilatory arsenate-respiring prokaryotes from arsenic-contaminated soils. Wu Y; Wu W; Xu Y; Zuo Y; Zeng XC J Environ Sci (China); 2023 Mar; 125():582-592. PubMed ID: 36375940 [TBL] [Abstract][Full Text] [Related]
14. Structural and mechanistic analysis of the arsenate respiratory reductase provides insight into environmental arsenic transformations. Glasser NR; Oyala PH; Osborne TH; Santini JM; Newman DK Proc Natl Acad Sci U S A; 2018 Sep; 115(37):E8614-E8623. PubMed ID: 30104376 [TBL] [Abstract][Full Text] [Related]
15. Biological effect of phosphate on the dissimilatory arsenate-respiring bacteria-catalyzed reductive mobilization of arsenic from contaminated soils. Shi W; Xu Y; Wu W; Zeng XC Environ Pollut; 2022 Sep; 308():119698. PubMed ID: 35787423 [TBL] [Abstract][Full Text] [Related]
16. The cymA gene, encoding a tetraheme c-type cytochrome, is required for arsenate respiration in Shewanella species. Murphy JN; Saltikov CW J Bacteriol; 2007 Mar; 189(6):2283-90. PubMed ID: 17209025 [TBL] [Abstract][Full Text] [Related]
17. Redox cycling of arsenic by the hydrothermal marine bacterium Marinobacter santoriniensis. Handley KM; Héry M; Lloyd JR Environ Microbiol; 2009 Jun; 11(6):1601-11. PubMed ID: 19226300 [TBL] [Abstract][Full Text] [Related]
19. Dissimilatory arsenate-respiring prokaryotes catalyze the dissolution, reduction and release of arsenic from paddy soils into groundwater: implication for the effect of sulfate. Shi W; Wu W; Zeng XC; Chen X; Zhu X; Cheng S Ecotoxicology; 2018 Oct; 27(8):1126-1136. PubMed ID: 30099680 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional response of the obligate anaerobe Desulfuribacillus stibiiarsenatis MLFW-2 Abin CA; Hollibaugh JT Environ Microbiol; 2019 Feb; 21(2):618-630. PubMed ID: 30548120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]