These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32978150)

  • 1. Ultimate suppression of thermal transport in amorphous silicon nitride by phononic nanostructure.
    Tambo N; Liao Y; Zhou C; Ashley EM; Takahashi K; Nealey PF; Naito Y; Shiomi J
    Sci Adv; 2020 Sep; 6(39):. PubMed ID: 32978150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Record Low Thermal Conductivity of Polycrystalline Si Nanowire: Breaking the Casimir Limit by Severe Suppression of Propagons.
    Zhou Y; Hu M
    Nano Lett; 2016 Oct; 16(10):6178-6187. PubMed ID: 27603153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of suppressed diffuson and propagon thermal conductivity of hydrogenated amorphous silicon films.
    Zhang Y; Eslamisaray MA; Feng T; Kortshagen U; Wang X
    Nanoscale Adv; 2021 Dec; 4(1):87-94. PubMed ID: 36132943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Reduction of Thermal Conductivity in Amorphous Silicon Nitride-Containing Phononic Crystals Fabricated Using Directed Self-Assembly of Block Copolymers.
    Zhou C; Tambo N; Ashley EM; Liao Y; Shiomi J; Takahashi K; Craig GSW; Nealey PF
    ACS Nano; 2020 Jun; 14(6):6980-6989. PubMed ID: 32459464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures.
    Fu B; Tang G; Li Y
    Phys Chem Chem Phys; 2017 Nov; 19(42):28517-28526. PubMed ID: 28902205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unusually High and Anisotropic Thermal Conductivity in Amorphous Silicon Nanostructures.
    Kwon S; Zheng J; Wingert MC; Cui S; Chen R
    ACS Nano; 2017 Mar; 11(3):2470-2476. PubMed ID: 28117979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning network topology and vibrational mode localization to achieve ultralow thermal conductivity in amorphous chalcogenides.
    Aryana K; Stewart DA; Gaskins JT; Nag J; Read JC; Olson DH; Grobis MK; Hopkins PE
    Nat Commun; 2021 May; 12(1):2817. PubMed ID: 33990553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance.
    Regner KT; Sellan DP; Su Z; Amon CH; McGaughey AJ; Malen JA
    Nat Commun; 2013; 4():1640. PubMed ID: 23535661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering.
    Neogi S; Reparaz JS; Pereira LF; Graczykowski B; Wagner MR; Sledzinska M; Shchepetov A; Prunnila M; Ahopelto J; Sotomayor-Torres CM; Donadio D
    ACS Nano; 2015 Apr; 9(4):3820-8. PubMed ID: 25827287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal transport in amorphous small organic materials: a mechanistic study.
    Zhou T; Li Z; Cheng Y; Ni Y; Volz S; Donadio D; Xiong S; Zhang W; Zhang X
    Phys Chem Chem Phys; 2020 Feb; 22(5):3058-3065. PubMed ID: 31960886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonons, Localization, and Thermal Conductivity of Diamond Nanothreads and Amorphous Graphene.
    Zhu T; Ertekin E
    Nano Lett; 2016 Aug; 16(8):4763-72. PubMed ID: 27388115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultimate Confinement of Phonon Propagation in Silicon Nanocrystalline Structure.
    Oyake T; Feng L; Shiga T; Isogawa M; Nakamura Y; Shiomi J
    Phys Rev Lett; 2018 Jan; 120(4):045901. PubMed ID: 29437417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal conductivity and specific heat of thin-film amorphous silicon.
    Zink BL; Pietri R; Hellman F
    Phys Rev Lett; 2006 Feb; 96(5):055902. PubMed ID: 16486955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-amorphous thermal conductivity in ultrathin crystalline silicon nanotubes.
    Wingert MC; Kwon S; Hu M; Poulikakos D; Xiang J; Chen R
    Nano Lett; 2015 Apr; 15(4):2605-11. PubMed ID: 25758163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directional Phonon Suppression Function as a Tool for the Identification of Ultralow Thermal Conductivity Materials.
    Romano G; Kolpak AM
    Sci Rep; 2017 Mar; 7():44379. PubMed ID: 28338003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature.
    Alaie S; Goettler DF; Su M; Leseman ZC; Reinke CM; El-Kady I
    Nat Commun; 2015 Jun; 6():7228. PubMed ID: 26105560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide.
    Lv W; Henry A
    Sci Rep; 2016 Oct; 6():35720. PubMed ID: 27767082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phononic thermal conductivity in silicene: the role of vacancy defects and boundary scattering.
    Barati M; Vazifehshenas T; Salavati-Fard T; Farmanbar M
    J Phys Condens Matter; 2018 Apr; 30(15):155307. PubMed ID: 29504943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examining the Validity of the Phonon Gas Model in Amorphous Materials.
    Lv W; Henry A
    Sci Rep; 2016 Dec; 6():37675. PubMed ID: 27917868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the Thermal Conductivity Characteristics for Ultra-Thin Body FD SOI MOSFETs Based on Phonon Scattering Mechanisms.
    Zhang G; Lai J; Su Y; Li B; Li B; Bu J; Yang CF
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31443215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.