These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 32978299)
21. Modeling gene regulation from paired expression and chromatin accessibility data. Duren Z; Chen X; Jiang R; Wang Y; Wong WH Proc Natl Acad Sci U S A; 2017 Jun; 114(25):E4914-E4923. PubMed ID: 28576882 [TBL] [Abstract][Full Text] [Related]
22. Establishment of regulatory elements during erythro-megakaryopoiesis identifies hematopoietic lineage-commitment points. Heuston EF; Keller CA; Lichtenberg J; Giardine B; Anderson SM; ; Hardison RC; Bodine DM Epigenetics Chromatin; 2018 May; 11(1):22. PubMed ID: 29807547 [TBL] [Abstract][Full Text] [Related]
23. Combined heterozygous loss of Ebf1 and Pax5 allows for T-lineage conversion of B cell progenitors. Ungerbäck J; Åhsberg J; Strid T; Somasundaram R; Sigvardsson M J Exp Med; 2015 Jun; 212(7):1109-23. PubMed ID: 26056231 [TBL] [Abstract][Full Text] [Related]
24. A map of the cis-regulatory sequences in the mouse genome. Shen Y; Yue F; McCleary DF; Ye Z; Edsall L; Kuan S; Wagner U; Dixon J; Lee L; Lobanenkov VV; Ren B Nature; 2012 Aug; 488(7409):116-20. PubMed ID: 22763441 [TBL] [Abstract][Full Text] [Related]
25. The functional consequences of variation in transcription factor binding. Cusanovich DA; Pavlovic B; Pritchard JK; Gilad Y PLoS Genet; 2014 Mar; 10(3):e1004226. PubMed ID: 24603674 [TBL] [Abstract][Full Text] [Related]
26. A functional and evolutionary perspective on transcription factor binding in Arabidopsis thaliana. Heyndrickx KS; Van de Velde J; Wang C; Weigel D; Vandepoele K Plant Cell; 2014 Oct; 26(10):3894-910. PubMed ID: 25361952 [TBL] [Abstract][Full Text] [Related]
28. Mechanisms by which transcription factors gain access to target sequence elements in chromatin. Guertin MJ; Lis JT Curr Opin Genet Dev; 2013 Apr; 23(2):116-23. PubMed ID: 23266217 [TBL] [Abstract][Full Text] [Related]
29. CoRE-ATAC: A deep learning model for the functional classification of regulatory elements from single cell and bulk ATAC-seq data. Thibodeau A; Khetan S; Eroglu A; Tewhey R; Stitzel ML; Ucar D PLoS Comput Biol; 2021 Dec; 17(12):e1009670. PubMed ID: 34898596 [TBL] [Abstract][Full Text] [Related]
30. Defining in vivo transcription factor complexes of the murine CD21 and CD23 genes. Debnath I; Roundy KM; Weis JJ; Weis JH J Immunol; 2007 Jun; 178(11):7139-50. PubMed ID: 17513763 [TBL] [Abstract][Full Text] [Related]
31. The accessible chromatin landscape of the human genome. Thurman RE; Rynes E; Humbert R; Vierstra J; Maurano MT; Haugen E; Sheffield NC; Stergachis AB; Wang H; Vernot B; Garg K; John S; Sandstrom R; Bates D; Boatman L; Canfield TK; Diegel M; Dunn D; Ebersol AK; Frum T; Giste E; Johnson AK; Johnson EM; Kutyavin T; Lajoie B; Lee BK; Lee K; London D; Lotakis D; Neph S; Neri F; Nguyen ED; Qu H; Reynolds AP; Roach V; Safi A; Sanchez ME; Sanyal A; Shafer A; Simon JM; Song L; Vong S; Weaver M; Yan Y; Zhang Z; Zhang Z; Lenhard B; Tewari M; Dorschner MO; Hansen RS; Navas PA; Stamatoyannopoulos G; Iyer VR; Lieb JD; Sunyaev SR; Akey JM; Sabo PJ; Kaul R; Furey TS; Dekker J; Crawford GE; Stamatoyannopoulos JA Nature; 2012 Sep; 489(7414):75-82. PubMed ID: 22955617 [TBL] [Abstract][Full Text] [Related]
32. Principles of regulatory information conservation between mouse and human. Cheng Y; Ma Z; Kim BH; Wu W; Cayting P; Boyle AP; Sundaram V; Xing X; Dogan N; Li J; Euskirchen G; Lin S; Lin Y; Visel A; Kawli T; Yang X; Patacsil D; Keller CA; Giardine B; ; Kundaje A; Wang T; Pennacchio LA; Weng Z; Hardison RC; Snyder MP Nature; 2014 Nov; 515(7527):371-375. PubMed ID: 25409826 [TBL] [Abstract][Full Text] [Related]
33. Predicting Chromatin Interactions from DNA Sequence Using DeepC. Schwessinger R Methods Mol Biol; 2023; 2624():19-42. PubMed ID: 36723807 [TBL] [Abstract][Full Text] [Related]
34. An integrated approach to identifying cis-regulatory modules in the human genome. Won KJ; Agarwal S; Shen L; Shoemaker R; Ren B; Wang W PLoS One; 2009; 4(5):e5501. PubMed ID: 19434238 [TBL] [Abstract][Full Text] [Related]
35. Integrated genome-scale analysis of the transcriptional regulatory landscape in a blood stem/progenitor cell model. Wilson NK; Schoenfelder S; Hannah R; Sánchez Castillo M; Schütte J; Ladopoulos V; Mitchelmore J; Goode DK; Calero-Nieto FJ; Moignard V; Wilkinson AC; Jimenez-Madrid I; Kinston S; Spivakov M; Fraser P; Göttgens B Blood; 2016 Mar; 127(13):e12-23. PubMed ID: 26809507 [TBL] [Abstract][Full Text] [Related]
36. Dynamic EBF1 occupancy directs sequential epigenetic and transcriptional events in B-cell programming. Li R; Cauchy P; Ramamoorthy S; Boller S; Chavez L; Grosschedl R Genes Dev; 2018 Jan; 32(2):96-111. PubMed ID: 29440261 [TBL] [Abstract][Full Text] [Related]
37. DeepTFactor: A deep learning-based tool for the prediction of transcription factors. Kim GB; Gao Y; Palsson BO; Lee SY Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33372147 [TBL] [Abstract][Full Text] [Related]
38. Sequence and chromatin determinants of cell-type-specific transcription factor binding. Arvey A; Agius P; Noble WS; Leslie C Genome Res; 2012 Sep; 22(9):1723-34. PubMed ID: 22955984 [TBL] [Abstract][Full Text] [Related]
39. DeFine: deep convolutional neural networks accurately quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional non-coding variants. Wang M; Tai C; E W; Wei L Nucleic Acids Res; 2018 Jun; 46(11):e69. PubMed ID: 29617928 [TBL] [Abstract][Full Text] [Related]