These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A novel human embryonic stem cell-derived Huntington's disease neuronal model exhibits mutant huntingtin (mHTT) aggregates and soluble mHTT-dependent neurodegeneration. Lu B; Palacino J FASEB J; 2013 May; 27(5):1820-9. PubMed ID: 23325320 [TBL] [Abstract][Full Text] [Related]
6. A role of mitochondrial complex II defects in genetic models of Huntington's disease expressing N-terminal fragments of mutant huntingtin. Damiano M; Diguet E; Malgorn C; D'Aurelio M; Galvan L; Petit F; Benhaim L; Guillermier M; Houitte D; Dufour N; Hantraye P; Canals JM; Alberch J; Delzescaux T; Déglon N; Beal MF; Brouillet E Hum Mol Genet; 2013 Oct; 22(19):3869-82. PubMed ID: 23720495 [TBL] [Abstract][Full Text] [Related]
7. Mutant huntingtin disrupts mitochondrial proteostasis by interacting with TIM23. Yablonska S; Ganesan V; Ferrando LM; Kim J; Pyzel A; Baranova OV; Khattar NK; Larkin TM; Baranov SV; Chen N; Strohlein CE; Stevens DA; Wang X; Chang YF; Schurdak ME; Carlisle DL; Minden JS; Friedlander RM Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16593-16602. PubMed ID: 31346086 [TBL] [Abstract][Full Text] [Related]
8. Targeting ATM ameliorates mutant Huntingtin toxicity in cell and animal models of Huntington's disease. Lu XH; Mattis VB; Wang N; Al-Ramahi I; van den Berg N; Fratantoni SA; Waldvogel H; Greiner E; Osmand A; Elzein K; Xiao J; Dijkstra S; de Pril R; Vinters HV; Faull R; Signer E; Kwak S; Marugan JJ; Botas J; Fischer DF; Svendsen CN; Munoz-Sanjuan I; Yang XW Sci Transl Med; 2014 Dec; 6(268):268ra178. PubMed ID: 25540325 [TBL] [Abstract][Full Text] [Related]
9. Mitochondria and Huntington's disease pathogenesis: insight from genetic and chemical models. Browne SE Ann N Y Acad Sci; 2008 Dec; 1147():358-82. PubMed ID: 19076457 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylation of huntingtin at Ser421 in YAC128 neurons is associated with protection of YAC128 neurons from NMDA-mediated excitotoxicity and is modulated by PP1 and PP2A. Metzler M; Gan L; Mazarei G; Graham RK; Liu L; Bissada N; Lu G; Leavitt BR; Hayden MR J Neurosci; 2010 Oct; 30(43):14318-29. PubMed ID: 20980587 [TBL] [Abstract][Full Text] [Related]
11. Modulation of mitochondrial function by stem cell-derived cellular components. Liu T; Im W; Lee ST; Ban JJ; Chai YJ; Lee M; Mook-Jung I; Chu K; Kim M Biochem Biophys Res Commun; 2014 Jun; 448(4):403-8. PubMed ID: 24802395 [TBL] [Abstract][Full Text] [Related]
12. Mutant huntingtin does not cross the mitochondrial outer membrane. Hamilton J; Brustovetsky T; Khanna R; Brustovetsky N Hum Mol Genet; 2020 Oct; 29(17):2962-2975. PubMed ID: 32821928 [TBL] [Abstract][Full Text] [Related]
13. Energy Metabolism and Mitochondrial Superoxide Anion Production in Pre-symptomatic Striatal Neurons Derived from Human-Induced Pluripotent Stem Cells Expressing Mutant Huntingtin. Hamilton J; Brustovetsky T; Sridhar A; Pan Y; Cummins TR; Meyer JS; Brustovetsky N Mol Neurobiol; 2020 Feb; 57(2):668-684. PubMed ID: 31435904 [TBL] [Abstract][Full Text] [Related]
14. Neural stem cells derived from the developing forebrain of YAC128 mice exhibit pathological features of Huntington's disease. Li E; Park HR; Hong CP; Kim Y; Choi J; Lee S; Park HJ; Lee B; Kim TA; Kim SJ; Kim HS; Song J Cell Prolif; 2020 Oct; 53(10):e12893. PubMed ID: 32865873 [TBL] [Abstract][Full Text] [Related]
15. Induced Pluripotent HD Monkey Stem Cells Derived Neural Cells for Drug Discovery. Kunkanjanawan T; Carter R; Ahn KS; Yang J; Parnpai R; Chan AWS SLAS Discov; 2017 Jul; 22(6):696-705. PubMed ID: 28027448 [TBL] [Abstract][Full Text] [Related]
16. HIPK3 modulates autophagy and HTT protein levels in neuronal and mouse models of Huntington disease. Fu Y; Sun X; Lu B Autophagy; 2018; 14(1):169-170. PubMed ID: 29130397 [TBL] [Abstract][Full Text] [Related]
17. Mitochondrial SIRT3 confers neuroprotection in Huntington's disease by regulation of oxidative challenges and mitochondrial dynamics. Naia L; Carmo C; Campesan S; Fão L; Cotton VE; Valero J; Lopes C; Rosenstock TR; Giorgini F; Rego AC Free Radic Biol Med; 2021 Feb; 163():163-179. PubMed ID: 33285261 [TBL] [Abstract][Full Text] [Related]
18. Nature and cause of mitochondrial dysfunction in Huntington's disease: focusing on huntingtin and the striatum. Oliveira JM J Neurochem; 2010 Jul; 114(1):1-12. PubMed ID: 20403078 [TBL] [Abstract][Full Text] [Related]