These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 32978399)

  • 21. Single-nucleotide editing: From principle, optimization to application.
    Tang J; Lee T; Sun T
    Hum Mutat; 2019 Dec; 40(12):2171-2183. PubMed ID: 31131955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Precision genome engineering through adenine base editing in plants.
    Kang BC; Yun JY; Kim ST; Shin Y; Ryu J; Choi M; Woo JW; Kim JS
    Nat Plants; 2018 Jul; 4(7):427-431. PubMed ID: 29867128
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting fidelity of adenine and cytosine base editors in mouse embryos.
    Lee HK; Willi M; Miller SM; Kim S; Liu C; Liu DR; Hennighausen L
    Nat Commun; 2018 Nov; 9(1):4804. PubMed ID: 30442934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A large-scale genome and transcriptome sequencing analysis reveals the mutation landscapes induced by high-activity adenine base editors in plants.
    Li S; Liu L; Sun W; Zhou X; Zhou H
    Genome Biol; 2022 Feb; 23(1):51. PubMed ID: 35139891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Current Status and Challenges of DNA Base Editing Tools.
    Jeong YK; Song B; Bae S
    Mol Ther; 2020 Sep; 28(9):1938-1952. PubMed ID: 32763143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving the Precision of Base Editing by Bubble Hairpin Single Guide RNA.
    Hu Z; Wang Y; Liu Q; Qiu Y; Zhong Z; Li K; Li W; Deng Z; Sun Y
    mBio; 2021 Apr; 12(2):. PubMed ID: 33879582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Fidelity Cytosine Base Editing in a GC-Rich Corynebacterium glutamicum with Reduced DNA Off-Target Editing Effects.
    Heo YB; Hwang GH; Kang SW; Bae S; Woo HM
    Microbiol Spectr; 2022 Dec; 10(6):e0376022. PubMed ID: 36374037
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dual base editor catalyzes both cytosine and adenine base conversions in human cells.
    Zhang X; Zhu B; Chen L; Xie L; Yu W; Wang Y; Li L; Yin S; Yang L; Hu H; Han H; Li Y; Wang L; Chen G; Ma X; Geng H; Huang W; Pang X; Yang Z; Wu Y; Siwko S; Kurita R; Nakamura Y; Yang L; Liu M; Li D
    Nat Biotechnol; 2020 Jul; 38(7):856-860. PubMed ID: 32483363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA capture by a CRISPR-Cas9-guided adenine base editor.
    Lapinaite A; Knott GJ; Palumbo CM; Lin-Shiao E; Richter MF; Zhao KT; Beal PA; Liu DR; Doudna JA
    Science; 2020 Jul; 369(6503):566-571. PubMed ID: 32732424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR-Cas9 DNA Base-Editing and Prime-Editing.
    Kantor A; McClements ME; MacLaren RE
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32872311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Base editors for simultaneous introduction of C-to-T and A-to-G mutations.
    Sakata RC; Ishiguro S; Mori H; Tanaka M; Tatsuno K; Ueda H; Yamamoto S; Seki M; Masuyama N; Nishida K; Nishimasu H; Arakawa K; Kondo A; Nureki O; Tomita M; Aburatani H; Yachie N
    Nat Biotechnol; 2020 Jul; 38(7):865-869. PubMed ID: 32483365
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.
    Grünewald J; Zhou R; Garcia SP; Iyer S; Lareau CA; Aryee MJ; Joung JK
    Nature; 2019 May; 569(7756):433-437. PubMed ID: 30995674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PhieABEs: a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants.
    Tan J; Zeng D; Zhao Y; Wang Y; Liu T; Li S; Xue Y; Luo Y; Xie X; Chen L; Liu YG; Zhu Q
    Plant Biotechnol J; 2022 May; 20(5):934-943. PubMed ID: 34984801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Precision genome editing using cytosine and adenine base editors in mammalian cells.
    Huang TP; Newby GA; Liu DR
    Nat Protoc; 2021 Feb; 16(2):1089-1128. PubMed ID: 33462442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineered domain-inlaid Nme2Cas9 adenine base editors with increased on-target DNA editing and targeting scope.
    Zhao D; Gao X; Zhou J; Li J; Qian Y; Wang D; Niu W; Zhang T; Hu M; Xiong H; Lai L; Li Z
    BMC Biol; 2023 Nov; 21(1):250. PubMed ID: 37946200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient Generation and Correction of Mutations in Human iPS Cells Utilizing mRNAs of CRISPR Base Editors and Prime Editors.
    Sürün D; Schneider A; Mircetic J; Neumann K; Lansing F; Paszkowski-Rogacz M; Hänchen V; Lee-Kirsch MA; Buchholz F
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32384610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects.
    Zuo E; Sun Y; Yuan T; He B; Zhou C; Ying W; Liu J; Wei W; Zeng R; Li Y; Yang H
    Nat Methods; 2020 Jun; 17(6):600-604. PubMed ID: 32424272
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytosine base editor 4 but not adenine base editor generates off-target mutations in mouse embryos.
    Lee HK; Smith HE; Liu C; Willi M; Hennighausen L
    Commun Biol; 2020 Jan; 3(1):19. PubMed ID: 31925293
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells.
    Kurt IC; Zhou R; Iyer S; Garcia SP; Miller BR; Langner LM; Grünewald J; Joung JK
    Nat Biotechnol; 2021 Jan; 39(1):41-46. PubMed ID: 32690971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Divergent susceptibilities to AAV-SaCas9-gRNA vector-mediated genome-editing in a single-cell-derived cell population.
    Morsy SG; Tonne JM; Zhu Y; Lu B; Budzik K; Krempski JW; Ali SA; El-Feky MA; Ikeda Y
    BMC Res Notes; 2017 Dec; 10(1):720. PubMed ID: 29221488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.