These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 3297846)

  • 1. Some observations on the inhibition and activation of a thermophilic protease.
    Cowan DA; Daniel RM; Morgan HW
    Int J Biochem; 1987; 19(5):483-6. PubMed ID: 3297846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of calcium and other metal ions with caldolysin, the thermostable proteinase from Thermus aquaticus strain T351.
    Khoo TC; Cowan DA; Daniel RM; Morgan HW
    Biochem J; 1984 Jul; 221(2):407-13. PubMed ID: 6383347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and some properties of an extracellular protease (caldolysin) from an extreme thermophile.
    Cowan DA; Daniel RM
    Biochim Biophys Acta; 1982 Aug; 705(3):293-305. PubMed ID: 6751397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A specific L-asparaginase from Thermus aquaticus.
    Curran MP; Daniel RM; Guy GR; Morgan HW
    Arch Biochem Biophys; 1985 Sep; 241(2):571-6. PubMed ID: 3929688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The properties of immobilized caldolysin, a thermostable protease from an extreme thermophile.
    Cowan DA; Daniel RM
    Biotechnol Bioeng; 1982 Sep; 24(9):2053-61. PubMed ID: 18548499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a chelator-resistant proteinase from Thermus strain Rt4A2.
    Freeman SA; Peek K; Prescott M; Daniel R
    Biochem J; 1993 Oct; 295 ( Pt 2)(Pt 2):463-9. PubMed ID: 8240244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A soluble NADH dehydrogenase (NADH: ferricyanide oxidoreductase) from Thermus aquaticus strain T351.
    Walsh KA; Daniel RM; Morgan HW
    Biochem J; 1983 Feb; 209(2):427-33. PubMed ID: 6847628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of a thermostable proteinase isolated from Thermus sp. strain Rt41A.
    Peek K; Daniel RM; Monk C; Parker L; Coolbear T
    Eur J Biochem; 1992 Aug; 207(3):1035-44. PubMed ID: 1499549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The purification and some properties of a stereospecific D-asparaginase from an extremely thermophilic bacterium, Thermus aquaticus.
    Guy GR; Daniel RM
    Biochem J; 1982 Jun; 203(3):787-90. PubMed ID: 7115316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fructose 1,6-bisphosphate-dependent L-lactate dehydrogenase from Thermus aquaticus YT-1, an extreme thermophile: activation by citrate and modification reagents and comparison with Thermus caldophilus GK24 L-lactate dehydrogenase.
    Machida M; Matsuzawa H; Ohta T
    J Biochem; 1985 Mar; 97(3):899-909. PubMed ID: 4019440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cold sensitivity of thermophilic and mesophilic RNA polymerases.
    Kulbachinskiy A; Bass I; Bogdanova E; Goldfarb A; Nikiforov V
    J Bacteriol; 2004 Nov; 186(22):7818-20. PubMed ID: 15516599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weakly bound calcium ions involved in the thermostability of aqualysin I, a heat-stable subtilisin-type protease of Thermus aquaticus YT-1.
    Lin SJ; Yoshimura E; Sakai H; Wakagi T; Matsuzawa H
    Biochim Biophys Acta; 1999 Aug; 1433(1-2):132-8. PubMed ID: 10446366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An enhanced thermostability in thermophilic 5-S ribonucleic acids under physiological salt conditions.
    Nazar RN; Sprott GD; Matheson AT; Van NT
    Biochim Biophys Acta; 1978 Nov; 521(1):288-94. PubMed ID: 363159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of proline residues in conferring thermostability on aqualysin I.
    Sakaguchi M; Matsuzaki M; Niimiya K; Seino J; Sugahara Y; Kawakita M
    J Biochem; 2007 Feb; 141(2):213-20. PubMed ID: 17169970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermostable proteases.
    Daniel RM; Toogood HS; Bergquist PL
    Biotechnol Genet Eng Rev; 1996; 13():51-100. PubMed ID: 8948109
    [No Abstract]   [Full Text] [Related]  

  • 16. Efficient selection for thermostable protease in Thermus thermophilus.
    Takagi H; Suzumura A; Hasuura Y; Hoshino T; Nakamori S
    Biosci Biotechnol Biochem; 2000 Apr; 64(4):899-902. PubMed ID: 10830517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation between stability, dynamics and enzyme activity in 3-phosphoglycerate kinases from yeast and Thermus thermophilus.
    Varley PG; Pain RH
    J Mol Biol; 1991 Jul; 220(2):531-8. PubMed ID: 1856872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Isolation and properties of DNA polymerase from the extreme thermophilic bacterium Thermus ruber].
    Kaledin AS; Sliusarenko AG; Gorodetskiĭ SI
    Biokhimiia; 1982 Nov; 47(11):1785-91. PubMed ID: 7150670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory characteristics of phosphoenolpyruvate carboxylase from the extreme thermophile, Thermus aquaticus.
    Sundaram TK; Bridger GP
    Biochim Biophys Acta; 1979 Oct; 570(2):406-10. PubMed ID: 497233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ancestral residues stabilizing 3-isopropylmalate dehydrogenase of an extreme thermophile: experimental evidence supporting the thermophilic common ancestor hypothesis.
    Miyazaki J; Nakaya S; Suzuki T; Tamakoshi M; Oshima T; Yamagishi A
    J Biochem; 2001 May; 129(5):777-82. PubMed ID: 11328601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.