These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 32978660)
21. Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor. Elmitwalli TA; Otterpohl R Water Res; 2007 Mar; 41(6):1379-87. PubMed ID: 17276482 [TBL] [Abstract][Full Text] [Related]
22. Biological hydrogen production in a UASB reactor with granules. II: Reactor performance in 3-year operation. Yu HQ; Mu Y Biotechnol Bioeng; 2006 Aug; 94(5):988-95. PubMed ID: 16615161 [TBL] [Abstract][Full Text] [Related]
23. 4-Nonylphenol degradation changes microbial community of scale-up Anaerobic Fluidized Bed Reactor. Dornelles HS; Motteran F; Sakamoto IK; Silva EL; Varesche MBA J Environ Manage; 2020 Aug; 267():110575. PubMed ID: 32349961 [TBL] [Abstract][Full Text] [Related]
24. Start-up of bio-hydrogen production reactor seeded with sewage sludge and its microbial community analysis. Gong ML; Ren NQ; Xing DF Water Sci Technol; 2005; 52(1-2):115-21. PubMed ID: 16180417 [TBL] [Abstract][Full Text] [Related]
25. [Start-up and continuous operation of bio-hydrogen production reactor at pH 5]. Gong ML; Ren NQ; Tang J Huan Jing Ke Xue; 2005 Mar; 26(2):177-80. PubMed ID: 16004324 [TBL] [Abstract][Full Text] [Related]
26. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation. Kongjan P; Min B; Angelidaki I Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170 [TBL] [Abstract][Full Text] [Related]
27. Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors. Yeshanew MM; Frunzo L; Pirozzi F; Lens PNL; Esposito G Bioresour Technol; 2016 Nov; 220():312-322. PubMed ID: 27591517 [TBL] [Abstract][Full Text] [Related]
28. Hydrogen-producing capability of anaerobic activated sludge in three types of fermentations in a continuous stirred-tank reactor. Li J; Zheng G; He J; Chang S; Qin Z Biotechnol Adv; 2009; 27(5):573-7. PubMed ID: 19393312 [TBL] [Abstract][Full Text] [Related]
29. Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration. Kongjan P; Angelidaki I Bioresour Technol; 2010 Oct; 101(20):7789-96. PubMed ID: 20554199 [TBL] [Abstract][Full Text] [Related]
30. Effect of thermal pre-treatment on inoculum sludge to enhance bio-hydrogen production from alkali hydrolysed rice straw in a mesophilic anaerobic baffled reactor. El-Bery H; Tawfik A; Kumari S; Bux F Environ Technol; 2013; 34(13-16):1965-72. PubMed ID: 24350450 [TBL] [Abstract][Full Text] [Related]
31. Co-Fermentation of Cheese Whey and Crude Glycerol in EGSB Reactor as a Strategy to Enhance Continuous Hydrogen and Propionic Acid Production. Lopes HJS; Ramos LR; Silva EL Appl Biochem Biotechnol; 2017 Nov; 183(3):712-728. PubMed ID: 28321784 [TBL] [Abstract][Full Text] [Related]
32. Development of appropriate technology for treatment of molasses-based wastewater. Syutsubo K; Onodera T; Choeisai P; Khodphuvieng J; Prammanee P; Yoochatchaval W; Kaewpradit W; Kubota K J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(9):1114-21. PubMed ID: 23573932 [TBL] [Abstract][Full Text] [Related]
33. Effect of hydraulic retention time on suppression of methanogens during a continuous biohydrogen production process using molasses wastewater. Yun JH; Cho KS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jan; 52(1):37-44. PubMed ID: 27610651 [TBL] [Abstract][Full Text] [Related]
34. The hydraulic retention time influences the abundance of Enterobacter, Clostridium and Lactobacillus during the hydrogen production from food waste. Santiago SG; Trably E; Latrille E; Buitrón G; Moreno-Andrade I Lett Appl Microbiol; 2019 Sep; 69(3):138-147. PubMed ID: 31219171 [TBL] [Abstract][Full Text] [Related]
35. Controlling methane and hydrogen production from cheese whey in an EGSB reactor by changing the HRT. Ramos LR; de Menezes CA; Soares LA; Sakamoto IK; Varesche MBA; Silva EL Bioprocess Biosyst Eng; 2020 Apr; 43(4):673-684. PubMed ID: 31834467 [TBL] [Abstract][Full Text] [Related]
36. Optimization of continuous hydrogen production from co-fermenting molasses with liquid swine manure in an anaerobic sequencing batch reactor. Wu X; Lin H; Zhu J Bioresour Technol; 2013 May; 136():351-9. PubMed ID: 23567702 [TBL] [Abstract][Full Text] [Related]
37. Anaerobic digestion of hemicellulose hydrolysate produced after hydrothermal pretreatment of sugarcane bagasse in UASB reactor. Ribeiro FR; Passos F; Gurgel LVA; Baêta BEL; de Aquino SF Sci Total Environ; 2017 Apr; 584-585():1108-1113. PubMed ID: 28162762 [TBL] [Abstract][Full Text] [Related]
38. Performance comparison of a continuous-flow stirred-tank reactor and an anaerobic sequencing batch reactor for fermentative hydrogen production depending on substrate concentration. Kim SH; Han SK; Shin HS Water Sci Technol; 2005; 52(10-11):23-9. PubMed ID: 16459773 [TBL] [Abstract][Full Text] [Related]
39. [Start-up of EGSB for biohydrogen production from compost leachate]. Liu Q; Xu H; Li M; Xu ZY; Qian GR Huan Jing Ke Xue; 2009 Aug; 30(8):2491-6. PubMed ID: 19799322 [TBL] [Abstract][Full Text] [Related]
40. Quantitative analysis of a high-rate hydrogen-producing microbial community in anaerobic agitated granular sludge bed bioreactors using glucose as substrate. Hung CH; Lee KS; Cheng LH; Huang YH; Lin PJ; Chang JS Appl Microbiol Biotechnol; 2007 Jun; 75(3):693-701. PubMed ID: 17440720 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]