BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 32978889)

  • 1. Pseudomonas as Versatile Aromatics Cell Factory.
    Schwanemann T; Otto M; Wierckx N; Wynands B
    Biotechnol J; 2020 Nov; 15(11):e1900569. PubMed ID: 32978889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering
    Vilbert AC; Kontur WS; Gille D; Noguera DR; Donohue TJ
    Appl Environ Microbiol; 2024 Jan; 90(1):e0166023. PubMed ID: 38117061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass.
    Lee JH; Wendisch VF
    J Biotechnol; 2017 Sep; 257():211-221. PubMed ID: 27871872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a Pseudomonas taiwanensis 4-coumarate platform for production of para-hydroxy aromatics with high yield and specificity.
    Wynands B; Kofler F; Sieberichs A; da Silva N; Wierckx N
    Metab Eng; 2023 Jul; 78():115-127. PubMed ID: 37209862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct biosynthesis of adipic acid from lignin-derived aromatics using engineered Pseudomonas putida KT2440.
    Niu W; Willett H; Mueller J; He X; Kramer L; Ma B; Guo J
    Metab Eng; 2020 May; 59():151-161. PubMed ID: 32130971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opportunities and challenges in biological lignin valorization.
    Beckham GT; Johnson CW; Karp EM; Salvachúa D; Vardon DR
    Curr Opin Biotechnol; 2016 Dec; 42():40-53. PubMed ID: 26974563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Industrial biotechnology of Pseudomonas putida: advances and prospects.
    Weimer A; Kohlstedt M; Volke DC; Nikel PI; Wittmann C
    Appl Microbiol Biotechnol; 2020 Sep; 104(18):7745-7766. PubMed ID: 32789744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals.
    Bilal M; Nawaz MZ; Iqbal HMN; Hou J; Mahboob S; Al-Ghanim KA; Cheng H
    Protein Pept Lett; 2018; 25(2):108-119. PubMed ID: 29359652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current state of aromatics production using yeast: achievements and challenges.
    Liu Q; Liu Y; Chen Y; Nielsen J
    Curr Opin Biotechnol; 2020 Oct; 65():65-74. PubMed ID: 32092624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochromes P450 in the biocatalytic valorization of lignin.
    Wolf ME; Hinchen DJ; DuBois JL; McGeehan JE; Eltis LD
    Curr Opin Biotechnol; 2022 Feb; 73():43-50. PubMed ID: 34303185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemistry, genetics and biotechnology of glycerol utilization in Pseudomonas species.
    Poblete-Castro I; Wittmann C; Nikel PI
    Microb Biotechnol; 2020 Jan; 13(1):32-53. PubMed ID: 30883020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limited life cycle and cost assessment for the bioconversion of lignin-derived aromatics into adipic acid.
    van Duuren JBJH; de Wild PJ; Starck S; Bradtmöller C; Selzer M; Mehlmann K; Schneider R; Kohlstedt M; Poblete-Castro I; Stolzenberger J; Barton N; Fritz M; Scholl S; Venus J; Wittmann C
    Biotechnol Bioeng; 2020 May; 117(5):1381-1393. PubMed ID: 32022244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computationally Prospecting Potential Pathways from Lignin Monomers and Dimers toward Aromatic Compounds.
    Wang L; Maranas CD
    ACS Synth Biol; 2021 May; 10(5):1064-1076. PubMed ID: 33877818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of fuels and chemicals from renewable resources using engineered Escherichia coli.
    Zhao C; Zhang Y; Li Y
    Biotechnol Adv; 2019 Nov; 37(7):107402. PubMed ID: 31170447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Coenzyme-Free Biocatalyst for the Value-Added Utilization of Lignin-Derived Aromatics.
    Ni J; Wu YT; Tao F; Peng Y; Xu P
    J Am Chem Soc; 2018 Nov; 140(47):16001-16005. PubMed ID: 30376327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iNovo479: Metabolic Modeling Provides a Roadmap to Optimize Bioproduct Yield from Deconstructed Lignin Aromatics by
    Linz AM; Ma Y; Scholz S; Noguera DR; Donohue TJ
    Metabolites; 2022 Apr; 12(4):. PubMed ID: 35448553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of
    Sivapuratharasan V; Lenzen C; Michel C; Muthukrishnan AB; Jayaraman G; Blank LM
    Metab Eng Commun; 2022 Dec; 15():e00202. PubMed ID: 36017490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects.
    Cao L; Yu IKM; Liu Y; Ruan X; Tsang DCW; Hunt AJ; Ok YS; Song H; Zhang S
    Bioresour Technol; 2018 Dec; 269():465-475. PubMed ID: 30146182
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Wang S; Cui J; Bilal M; Hu H; Wang W; Zhang X
    Crit Rev Biotechnol; 2020 Dec; 40(8):1232-1249. PubMed ID: 32907412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From gene to biorefinery: microbial β-etherases as promising biocatalysts for lignin valorization.
    Picart P; de María PD; Schallmey A
    Front Microbiol; 2015; 6():916. PubMed ID: 26388858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.