BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 32978963)

  • 1. Optimization of multi-electrode implant configurations and programming for the delivery of non-ablative electric fields in intratumoral modulation therapy.
    Iredale E; Deweyert A; Hoover DA; Chen JZ; Schmid S; Hebb MO; Peters TM; Wong E
    Med Phys; 2020 Nov; 47(11):5441-5454. PubMed ID: 32978963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Planning system for the optimization of electric field delivery using implanted electrodes for brain tumor control.
    Iredale E; Voigt B; Rankin A; Kim KW; Chen JZ; Schmid S; Hebb MO; Peters TM; Wong E
    Med Phys; 2022 Sep; 49(9):6055-6067. PubMed ID: 35754362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporally dynamic electric fields for brain cancer treatment: an
    Iredale E; Elsaleh A; Xu H; Christiaans P; Deweyert A; Ronald J; Schmid S; Hebb MO; Peters TM; Wong E
    Phys Med Biol; 2023 Apr; 68(8):. PubMed ID: 36893468
    [No Abstract]   [Full Text] [Related]  

  • 4. Optimized multi-electrode stimulation increases focality and intensity at target.
    Dmochowski JP; Datta A; Bikson M; Su Y; Parra LC
    J Neural Eng; 2011 Aug; 8(4):046011. PubMed ID: 21659696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy.
    Lee EK; Fox T; Crocker I
    Int J Radiat Oncol Biol Phys; 2006 Jan; 64(1):301-20. PubMed ID: 16289912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations.
    Corović S; Pavlin M; Miklavcic D
    Biomed Eng Online; 2007 Oct; 6():37. PubMed ID: 17937793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The optimization of needle electrode number and placement for irreversible electroporation of hepatocellular carcinoma.
    Adeyanju OO; Al-Angari HM; Sahakian AV
    Radiol Oncol; 2012 Jun; 46(2):126-35. PubMed ID: 23077449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization.
    Sel D; Lebar AM; Miklavcic D
    IEEE Trans Biomed Eng; 2007 May; 54(5):773-81. PubMed ID: 17518273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-invasive stimulation with temporal interference: optimization of the electric field deep in the brain with the use of a genetic algorithm.
    Stoupis D; Samaras T
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35970146
    [No Abstract]   [Full Text] [Related]  

  • 10. EView: An electric field visualization web platform for electroporation-based therapies.
    Perera-Bel E; Yagüe C; Mercadal B; Ceresa M; Beitel-White N; Davalos RV; Ballester MAG; Ivorra A
    Comput Methods Programs Biomed; 2020 Dec; 197():105682. PubMed ID: 32795723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance optimization of current focusing and virtual electrode strategies in retinal implants.
    Khalili Moghaddam G; Lovell NH; Wilke RG; Suaning GJ; Dokos S
    Comput Methods Programs Biomed; 2014 Nov; 117(2):334-42. PubMed ID: 25023532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Educational application for visualization and analysis of electric field strength in multiple electrode electroporation.
    Mahnič-Kalamiza S; Kotnik T; Miklavčič D
    BMC Med Educ; 2012 Oct; 12():102. PubMed ID: 23107609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffuse intrinsic pontine glioma cells are vulnerable to low intensity electric fields delivered by intratumoral modulation therapy.
    Deweyert A; Iredale E; Xu H; Wong E; Schmid S; Hebb MO
    J Neurooncol; 2019 May; 143(1):49-56. PubMed ID: 30852713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac potential and potential gradient fields generated by single, combined, and sequential shocks during ventricular defibrillation.
    Wharton JM; Wolf PD; Smith WM; Chen PS; Frazier DW; Yabe S; Danieley N; Ideker RE
    Circulation; 1992 Apr; 85(4):1510-23. PubMed ID: 1555291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biophysical modeling of the electric field magnitude and distribution induced by electrical stimulation with intracerebral electrodes.
    Alonso F; Mercadal B; Salvador R; Ruffini G; Bartolomei F; Wendling F; Modolo J
    Biomed Phys Eng Express; 2023 Jun; 9(4):. PubMed ID: 37160106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical optimization of gene electrotransfer into muscle tissue.
    Zupanic A; Corovic S; Miklavcic D; Pavlin M
    Biomed Eng Online; 2010 Nov; 9():66. PubMed ID: 21050435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric field distribution in a finite-volume head model of deep brain stimulation.
    Grant PF; Lowery MM
    Med Eng Phys; 2009 Nov; 31(9):1095-103. PubMed ID: 19656716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes.
    Anderson DN; Osting B; Vorwerk J; Dorval AD; Butson CR
    J Neural Eng; 2018 Apr; 15(2):026005. PubMed ID: 29235446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-vivo estimation of tissue electrical conductivities of a rabbit eye for precise simulation of electric field distributions during ocular iontophoresis.
    Lee S; Lee C; Kim E; Ko SA; Kim SN; Choy YB; Im CH
    Int J Numer Method Biomed Eng; 2022 Jan; 38(1):e3540. PubMed ID: 34672120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle swarm optimization for programming deep brain stimulation arrays.
    Peña E; Zhang S; Deyo S; Xiao Y; Johnson MD
    J Neural Eng; 2017 Feb; 14(1):016014. PubMed ID: 28068291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.