These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32979486)

  • 1. Gene amplification, laboratory evolution, and biosensor screening reveal MucK as a terephthalic acid transporter in Acinetobacter baylyi ADP1.
    Pardo I; Jha RK; Bermel RE; Bratti F; Gaddis M; McIntyre E; Michener W; Neidle EL; Dale T; Beckham GT; Johnson CW
    Metab Eng; 2020 Nov; 62():260-274. PubMed ID: 32979486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Highly Ferulate-Tolerant Acinetobacter baylyi ADP1 Isolates by a Rapid Reverse Engineering Method.
    Luo J; McIntyre EA; Bedore SR; Santala V; Neidle EL; Santala S
    Appl Environ Microbiol; 2022 Jan; 88(2):e0178021. PubMed ID: 34788063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced Mutation Rate and Increased Transformability of Transposon-Free Acinetobacter baylyi ADP1-ISx.
    Suárez GA; Renda BA; Dasgupta A; Barrick JE
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28667117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mucK, a gene in Acinetobacter calcoaceticus ADP1 (BD413), encodes the ability to grow on exogenous cis,cis-muconate as the sole carbon source.
    Williams PA; Shaw LE
    J Bacteriol; 1997 Sep; 179(18):5935-42. PubMed ID: 9294455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of l- and d-Aspartate Transport and Metabolism in Acinetobacter baylyi ADP1.
    Bedore SR; Schmidt AL; Slarks LE; Duscent-Maitland CV; Elliott KT; Andresen S; Costa FG; Weerth RS; Tumen-Velasquez MP; Nilsen LN; Dean CE; Karls AC; Hoover TR; Neidle EL
    Appl Environ Microbiol; 2022 Aug; 88(15):e0088322. PubMed ID: 35862682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional regulation of the terephthalate catabolism operon in Comamonas sp. strain E6.
    Kasai D; Kitajima M; Fukuda M; Masai E
    Appl Environ Microbiol; 2010 Sep; 76(18):6047-55. PubMed ID: 20656871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Ultra-Sensitive
    Dierkes RF; Wypych A; Pérez-García P; Danso D; Chow J; Streit WR
    Appl Environ Microbiol; 2023 Jan; 89(1):e0160322. PubMed ID: 36507653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel tripartite aromatic acid transporter essential for terephthalate uptake in Comamonas sp. strain E6.
    Hosaka M; Kamimura N; Toribami S; Mori K; Kasai D; Fukuda M; Masai E
    Appl Environ Microbiol; 2013 Oct; 79(19):6148-55. PubMed ID: 23913423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Furfural biotransformation in Acinetobacter baylyi ADP1 and Acinetobacter schindleri ACE.
    Arteaga JE; Cerros K; Rivera-Becerril E; Lara AR; Le Borgne S; Sigala JC
    Biotechnol Lett; 2021 May; 43(5):1043-1050. PubMed ID: 33590377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acinetobacter baylyi ADP1-naturally competent for synthetic biology.
    Santala S; Santala V
    Essays Biochem; 2021 Jul; 65(2):309-318. PubMed ID: 33769448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome instability mediates the loss of key traits by Acinetobacter baylyi ADP1 during laboratory evolution.
    Renda BA; Dasgupta A; Leon D; Barrick JE
    J Bacteriol; 2015 Mar; 197(5):872-81. PubMed ID: 25512307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-step selection of drug resistant Acinetobacter baylyi ADP1 mutants reveals a functional redundancy in the recruitment of multidrug efflux systems.
    Brzoska AJ; Hassan KA; de Leon EJ; Paulsen IT; Lewis PJ
    PLoS One; 2013; 8(2):e56090. PubMed ID: 23409126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mismatch repair system (mutS and mutL) in Acinetobacter baylyi ADP1.
    Zhou H; Zhang L; Xu Q; Zhang L; Yu Y; Hua X
    BMC Microbiol; 2020 Feb; 20(1):40. PubMed ID: 32111158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acinetobacter baylyi ADP1: transforming the choice of model organism.
    Elliott KT; Neidle EL
    IUBMB Life; 2011 Dec; 63(12):1075-80. PubMed ID: 22034222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the terephthalate degradation genes of Comamonas sp. strain E6.
    Sasoh M; Masai E; Ishibashi S; Hara H; Kamimura N; Miyauchi K; Fukuda M
    Appl Environ Microbiol; 2006 Mar; 72(3):1825-32. PubMed ID: 16517628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering
    Arvay E; Biggs BW; Guerrero L; Jiang V; Tyo K
    Metab Eng Commun; 2021 Dec; 13():e00173. PubMed ID: 34430203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of a Competence-Reducing Filamentous Phage from the Genome of Acinetobacter baylyi ADP1.
    Renda BA; Chan C; Parent KN; Barrick JE
    J Bacteriol; 2016 Dec; 198(23):3209-3219. PubMed ID: 27645387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic metabolic pathway for the production of 1-alkenes from lignin-derived molecules.
    Luo J; Lehtinen T; Efimova E; Santala V; Santala S
    Microb Cell Fact; 2019 Mar; 18(1):48. PubMed ID: 30857542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Twin-layer biosensor for real-time monitoring of alkane metabolism.
    Lehtinen T; Santala V; Santala S
    FEMS Microbiol Lett; 2017 Mar; 364(6):. PubMed ID: 28333269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Similarities between the antABC-encoded anthranilate dioxygenase and the benABC-encoded benzoate dioxygenase of Acinetobacter sp. strain ADP1.
    Bundy BM; Campbell AL; Neidle EL
    J Bacteriol; 1998 Sep; 180(17):4466-74. PubMed ID: 9721284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.