BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 32979505)

  • 1. Mechanistic insights into hyperuricemia-associated renal abnormalities with special emphasis on epithelial-to-mesenchymal transition: Pathologic implications and putative pharmacologic targets.
    Balakumar P; Alqahtani A; Khan NA; Mahadevan N; Dhanaraj SA
    Pharmacol Res; 2020 Nov; 161():105209. PubMed ID: 32979505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Uric Acid-Induced Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells via the TLR4/NF-kB Signaling Pathway.
    Liu H; Xiong J; He T; Xiao T; Li Y; Yu Y; Huang Y; Xu X; Huang Y; Zhang J; Zhang B; Zhao J
    Am J Nephrol; 2017; 46(4):333-342. PubMed ID: 29017152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacologic targeting ERK1/2 attenuates the development and progression of hyperuricemic nephropathy in rats.
    Liu N; Xu L; Shi Y; Fang L; Gu H; Wang H; Ding X; Zhuang S
    Oncotarget; 2017 May; 8(20):33807-33826. PubMed ID: 28442634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectiveness of febuxostat in patients with allopurinol-refractory hyperuricemic chronic kidney disease
.
    Kwak CH; Sohn M; Han N; Cho YS; Kim YS; Oh JM
    Int J Clin Pharmacol Ther; 2018 Jul; 56(7):321-327. PubMed ID: 29750634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperuricemia and Progression of Chronic Kidney Disease: Role of Phenotype Transition of Renal Tubular and Endothelial Cells.
    Kang DH
    Contrib Nephrol; 2018; 192():48-55. PubMed ID: 29393109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changeover Trial of Febuxostat and Topiroxostat for Hyperuricemia with Cardiovascular Disease: Sub-Analysis for Chronic Kidney Disease (TROFEO CKD Trial).
    Sezai A; Unosawa S; Taoka M; Osaka S; Sekino H; Tanaka M
    Ann Thorac Cardiovasc Surg; 2020 Aug; 26(4):202-208. PubMed ID: 31748427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time to target uric acid to retard CKD progression.
    Kumagai T; Ota T; Tamura Y; Chang WX; Shibata S; Uchida S
    Clin Exp Nephrol; 2017 Apr; 21(2):182-192. PubMed ID: 27339448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural flavonol fisetin attenuated hyperuricemic nephropathy via inhibiting IL-6/JAK2/STAT3 and TGF-β/SMAD3 signaling.
    Ren Q; Tao S; Guo F; Wang B; Yang L; Ma L; Fu P
    Phytomedicine; 2021 Jul; 87():153552. PubMed ID: 33994251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blockade of enhancer of zeste homolog 2 alleviates renal injury associated with hyperuricemia.
    Shi Y; Xu L; Tao M; Fang L; Lu J; Gu H; Ma S; Lin T; Wang Y; Bao W; Qiu A; Zhuang S; Liu N
    Am J Physiol Renal Physiol; 2019 Mar; 316(3):F488-F505. PubMed ID: 30566000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Protective Effect of Febuxostat on Chronic Tacrolimus-Induced Nephrotoxicity in Rats.
    Kim HS; Lim SW; Jin L; Jin J; Chung BH; Yang CW
    Nephron; 2017; 135(1):61-71. PubMed ID: 27701176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperuricemia-induced NLRP3 activation of macrophages contributes to the progression of diabetic nephropathy.
    Kim SM; Lee SH; Kim YG; Kim SY; Seo JW; Choi YW; Kim DJ; Jeong KH; Lee TW; Ihm CG; Won KY; Moon JY
    Am J Physiol Renal Physiol; 2015 May; 308(9):F993-F1003. PubMed ID: 25651569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Febuxostat on Oxidative Stress.
    Fukui T; Maruyama M; Yamauchi K; Yoshitaka S; Yasuda T; Abe Y
    Clin Ther; 2015 Jul; 37(7):1396-401. PubMed ID: 25913922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research Advances in the Mechanisms of Hyperuricemia-Induced Renal Injury.
    Su HY; Yang C; Liang D; Liu HF
    Biomed Res Int; 2020; 2020():5817348. PubMed ID: 32685502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The urate-lowering efficacy and safety of febuxostat versus allopurinol in Chinese patients with asymptomatic hyperuricemia and with chronic kidney disease stages 3-5.
    Liu X; Wang H; Ma R; Shao L; Zhang W; Jiang W; Luo C; Zhai T; Xu Y
    Clin Exp Nephrol; 2019 Mar; 23(3):362-370. PubMed ID: 30291473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Qi-Zhu-Xie-Zhuo-Fang reduces serum uric acid levels and ameliorates renal fibrosis in hyperuricemic nephropathy rats.
    Huijuan W; Xiaoxu C; Rui S; Xinghui L; Beibei T; Jianchun M
    Biomed Pharmacother; 2017 Jul; 91():358-365. PubMed ID: 28463799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of febuxostat on epithelial-to-mesenchymal transition of kidney tubules, serum interleukin-6 and transforming growth factor β(1) in hyperuricemic rats].
    Lin ZM; Zhang RS; Fan CX; Liang YL; Li L; Zhao L; Qu JC; Xu X; Zhao HY; Liu XN; Zhu KS
    Zhonghua Nei Ke Za Zhi; 2017 May; 56(5):363-367. PubMed ID: 28460508
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparison of renoprotective effects of febuxostat and allopurinol in hyperuricemic patients with chronic kidney disease.
    Lee JW; Lee KH
    Int Urol Nephrol; 2019 Mar; 51(3):467-473. PubMed ID: 30604229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The uric acid cardio-nephropathy].
    Viazzi F; Bonino B; Cappadona F; Pontremoli R
    G Ital Nefrol; 2017 Mar; 34(Suppl 69):41-48. PubMed ID: 28682028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Febuxostat on Ambulatory Blood Pressure in Subjects With Hyperuricemia and Hypertension: A Phase 2 Randomized Placebo-Controlled Study.
    Gunawardhana L; McLean L; Punzi HA; Hunt B; Palmer RN; Whelton A; Feig DI
    J Am Heart Assoc; 2017 Nov; 6(11):. PubMed ID: 29102979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of therapeutic efficacy of febuxostat in chronic kidney disease stage IIIA to stage VD.
    Sarvepalli PS; Fatima M; Quadri AK; Taher AR; Habeeb A; Amreen F; Parveen BN; Rajaram KG
    Saudi J Kidney Dis Transpl; 2018; 29(5):1050-1056. PubMed ID: 30381500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.