BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32979792)

  • 1. Recent progress on nanoparticles for targeted aneurysm treatment and imaging.
    Yodsanit N; Wang B; Zhao Y; Guo LW; Kent KC; Gong S
    Biomaterials; 2021 Jan; 265():120406. PubMed ID: 32979792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathogenesis-Guided Rational Engineering of Nanotherapies for the Targeted Treatment of Abdominal Aortic Aneurysm by Inhibiting Neutrophilic Inflammation.
    Hu K; Zhong L; Lin W; Zhao G; Pu W; Feng Z; Zhou M; Ding J; Zhang J
    ACS Nano; 2024 Feb; 18(8):6650-6672. PubMed ID: 38369729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the targeting and fate of cathepsin k antibody-modified nanoparticles in a rat abdominal aortic aneurysm model.
    Camardo A; Carney S; Ramamurthi A
    Acta Biomater; 2020 Aug; 112():225-233. PubMed ID: 32504690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting the Extracellular Matrix in Abdominal Aortic Aneurysms Using Molecular Imaging Insights.
    Adams L; Brangsch J; Hamm B; Makowski MR; Keller S
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33799971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoparticles that target degraded elastin improve imaging and rupture prediction in an AngII mediated mouse model of abdominal aortic aneurysm.
    Wang X; Lane BA; Eberth JF; Lessner SM; Vyavahare NR
    Theranostics; 2019; 9(14):4156-4167. PubMed ID: 31281538
    [No Abstract]   [Full Text] [Related]  

  • 6. Pharmacological Therapy of Abdominal Aortic Aneurysm: An Update.
    Wang YD; Liu ZJ; Ren J; Xiang MX
    Curr Vasc Pharmacol; 2018 Jan; 16(2):114-124. PubMed ID: 28412911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pentagalloyl Glucose-Laden Poly(lactide-
    Arnold F; Muzzio N; Patnaik SS; Finol EA; Romero G
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25771-25782. PubMed ID: 34030437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticle-Assisted Diagnosis and Treatment for Abdominal Aortic Aneurysm.
    Yin L; Zhang K; Sun Y; Liu Z
    Front Med (Lausanne); 2021; 8():665846. PubMed ID: 34307401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inflammation as a Predictor of Abdominal Aortic Aneurysm Growth and Rupture: A Systematic Review of Imaging Biomarkers.
    Jalalzadeh H; Indrakusuma R; Planken RN; Legemate DA; Koelemay MJ; Balm R
    Eur J Vasc Endovasc Surg; 2016 Sep; 52(3):333-42. PubMed ID: 27283346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing trans-endothelial transport of nanoparticles for delivery to abdominal aortic aneurysms.
    Yau J; Chukwu P; Jedlicka SS; Ramamurthi A
    J Biomed Mater Res A; 2024 Jun; 112(6):881-894. PubMed ID: 38192169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systemic Delivery of Nanoparticles Loaded with Pentagalloyl Glucose Protects Elastic Lamina and Prevents Abdominal Aortic Aneurysm in Rats.
    Nosoudi N; Chowdhury A; Siclari S; Parasaram V; Karamched S; Vyavahare N
    J Cardiovasc Transl Res; 2016 Dec; 9(5-6):445-455. PubMed ID: 27542007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibrinolytic PLGA nanoparticles for slow clot lysis within abdominal aortic aneurysms attenuate proteolytic loss of vascular elastic matrix.
    Sivaraman B; Sylvester A; Ramamurthi A
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():145-156. PubMed ID: 26652359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turning back the clock: regression of abdominal aortic aneurysms via pharmacotherapy.
    Aoki H; Yoshimura K; Matsuzaki M
    J Mol Med (Berl); 2007 Oct; 85(10):1077-88. PubMed ID: 17522832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticles Effectively Target Rapamycin Delivery to Sites of Experimental Aortic Aneurysm in Rats.
    Shirasu T; Koyama H; Miura Y; Hoshina K; Kataoka K; Watanabe T
    PLoS One; 2016; 11(6):e0157813. PubMed ID: 27336852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concurrent Molecular Magnetic Resonance Imaging of Inflammatory Activity and Extracellular Matrix Degradation for the Prediction of Aneurysm Rupture.
    Brangsch J; Reimann C; Kaufmann JO; Adams LC; Onthank DC; Thöne-Reineke C; Robinson SP; Buchholz R; Karst U; Botnar RM; Hamm B; Makowski MR
    Circ Cardiovasc Imaging; 2019 Mar; 12(3):e008707. PubMed ID: 30871334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Modified Murine Abdominal Aortic Aneurysm Rupture Model Using Elastase Perfusion and Angiotensin II Infusion.
    Yue J; Yin L; Shen J; Liu Z
    Ann Vasc Surg; 2020 Aug; 67():474-481. PubMed ID: 32171859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential Medication Treatment According to Pathological Mechanisms in Abdominal Aortic Aneurysm.
    Zhang SL; Du X; Chen YQ; Tan YS; Liu L
    J Cardiovasc Pharmacol; 2018 Jan; 71(1):46-57. PubMed ID: 28953105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current Status and Perspectives on Pharmacologic Therapy for Abdominal Aortic Aneurysm.
    Yoshimura K; Morikage N; Nishino-Fujimoto S; Furutani A; Shirasawa B; Hamano K
    Curr Drug Targets; 2018; 19(11):1265-1275. PubMed ID: 29284386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of the mTOR pathway in abdominal aortic aneurysm: implications of smooth muscle cell contractile phenotype, inflammation, and aneurysm expansion.
    Li G; Qin L; Wang L; Li X; Caulk AW; Zhang J; Chen PY; Xin S
    Am J Physiol Heart Circ Physiol; 2017 Jun; 312(6):H1110-H1119. PubMed ID: 28213405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serum Calprotectin as a Novel Biomarker in Abdominal Aortic Aneurysm Pathogenesis and Progression: Preliminary Data from Experimental Model in Rats.
    Moris D; Theocharis S; Davakis S; Patelis N; Agrogiannis G; Vlachos IS; Spartalis E; Athanasiou A; Bakoyiannis C; Perrea DN; Georgopoulos S
    Curr Vasc Pharmacol; 2018 Jan; 16(2):168-178. PubMed ID: 28155626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.