These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1128 related articles for article (PubMed ID: 32979802)
21. Indole-3-acetic acid promotes cadmium (Cd) accumulation in a Cd hyperaccumulator and a non-hyperaccumulator by different physiological responses. Ran J; Zheng W; Wang H; Wang H; Li Q Ecotoxicol Environ Saf; 2020 Mar; 191():110213. PubMed ID: 31978764 [TBL] [Abstract][Full Text] [Related]
22. Heavy metal-immobilizing bacteria increase the biomass and reduce the Cd and Pb uptake by pakchoi (Brassica chinensis L.) in heavy metal-contaminated soil. Han H; Cai H; Wang X; Hu X; Chen Z; Yao L Ecotoxicol Environ Saf; 2020 Jun; 195():110375. PubMed ID: 32200142 [TBL] [Abstract][Full Text] [Related]
23. Effects of microplastics on the phytoremediation of Cd, Pb, and Zn contaminated soils by Solanum photeinocarpum and Lantana camara. Yu Q; Gao B; Wu P; Chen M; He C; Zhang X Environ Res; 2023 Aug; 231(Pt 3):116312. PubMed ID: 37270082 [TBL] [Abstract][Full Text] [Related]
24. Optimization of NPK fertilization combined with phytoremediation of cadmium contaminated soil by orthogonal experiment. Wang J; Chen X; Chi Y; Chu S; Hayat K; Zhi Y; Hayat S; Terziev D; Zhang D; Zhou P Ecotoxicol Environ Saf; 2020 Feb; 189():109997. PubMed ID: 31812023 [TBL] [Abstract][Full Text] [Related]
25. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Sun Y; Zhou Q; Diao C Bioresour Technol; 2008 Mar; 99(5):1103-10. PubMed ID: 17719774 [TBL] [Abstract][Full Text] [Related]
26. Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Ji P; Sun T; Song Y; Ackland ML; Liu Y Environ Pollut; 2011 Mar; 159(3):762-8. PubMed ID: 21185631 [TBL] [Abstract][Full Text] [Related]
27. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Luo SL; Chen L; Chen JL; Xiao X; Xu TY; Wan Y; Rao C; Liu CB; Liu YT; Lai C; Zeng GM Chemosphere; 2011 Nov; 85(7):1130-8. PubMed ID: 21868057 [TBL] [Abstract][Full Text] [Related]
28. Phytoremediation of cadmium-polluted soil assisted by D-gluconate-enhanced Enterobacter cloacae colonization in the Solanum nigrum L. rhizosphere. Xu Z; Wang D; Tang W; Wang L; Li Q; Lu Z; Liu H; Zhong Y; He T; Guo S Sci Total Environ; 2020 Aug; 732():139265. PubMed ID: 32416401 [TBL] [Abstract][Full Text] [Related]
29. [Isolation and Identification of the Plant Endophyte R-13 and Its Effect on Cadmium Accumulation in Pang J; Liu YM; Huang YC; Wang CR; Liu B; Liu ZQ; Huang YZ; Huang YF; Zhang CB Huan Jing Ke Xue; 2021 Sep; 42(9):4471-4480. PubMed ID: 34414747 [TBL] [Abstract][Full Text] [Related]
30. In-situ cadmium phytoremediation using Solanum nigrum L.: the bio-accumulation characteristics trail. Ji P; Song Y; Sun T; Liu Y; Cao X; Xu D; Yang X; McRae T Int J Phytoremediation; 2011; 13(10):1014-23. PubMed ID: 21972568 [TBL] [Abstract][Full Text] [Related]
31. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Tak HI; Ahmad F; Babalola OO Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811 [TBL] [Abstract][Full Text] [Related]
32. A two-year field study of phytoremediation using Solanum nigrum L. in China. Ji P; Song Y; Jiang Y; Tang X; Tong Y; Gao P; Han W Int J Phytoremediation; 2016 Sep; 18(9):924-8. PubMed ID: 27064185 [TBL] [Abstract][Full Text] [Related]
33. Strong accumulation capacity of hyperaccumulator Solanum nigrum L. for low or insoluble Cd compounds in soil and its implication for phytoremediation. Dou X; Dai H; Skuza L; Wei S Chemosphere; 2020 Dec; 260():127564. PubMed ID: 32673873 [TBL] [Abstract][Full Text] [Related]
34. Inoculation with Metal-Mobilizing Plant-Growth-Promoting Rhizobacterium Bacillus sp. SC2b and Its Role in Rhizoremediation. Ma Y; Oliveira RS; Wu L; Luo Y; Rajkumar M; Rocha I; Freitas H J Toxicol Environ Health A; 2015; 78(13-14):931-44. PubMed ID: 26167758 [TBL] [Abstract][Full Text] [Related]
35. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils. Ju W; Liu L; Jin X; Duan C; Cui Y; Wang J; Ma D; Zhao W; Wang Y; Fang L Chemosphere; 2020 Sep; 254():126724. PubMed ID: 32334248 [TBL] [Abstract][Full Text] [Related]
36. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate. Sun Y; Wen C; Liang X; He C Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654 [TBL] [Abstract][Full Text] [Related]
37. Phytoremediation of cadmium-contaminated soils by Solanum nigrum L. enhanced with biodegradable chelating agents. Teng Y; Li Z; Yu A; Guan W; Wang Z; Yu H; Zou L Environ Sci Pollut Res Int; 2022 Aug; 29(37):56750-56759. PubMed ID: 35347607 [TBL] [Abstract][Full Text] [Related]
38. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review. Rehman MZU; Rizwan M; Ali S; Ok YS; Ishaque W; Saifullah ; Nawaz MF; Akmal F; Waqar M Ecotoxicol Environ Saf; 2017 Sep; 143():236-248. PubMed ID: 28551581 [TBL] [Abstract][Full Text] [Related]
39. Characterization of cadmium-resistant rhizobacteria and their promotion effects on Brassica napus growth and cadmium uptake. Li X; Yan Z; Gu D; Li D; Tao Y; Zhang D; Su L; Ao Y J Basic Microbiol; 2019 Jun; 59(6):579-590. PubMed ID: 30980735 [TBL] [Abstract][Full Text] [Related]
40. Improving cadmium accumulation by Solanum nigrum L. via regulating rhizobacterial community and metabolic function with phosphate-solubilizing bacteria colonization. He T; Xu ZJ; Wang JF; Wang FP; Zhou XF; Wang LL; Li QS Chemosphere; 2022 Jan; 287(Pt 2):132209. PubMed ID: 34826911 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]