These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 32980108)
1. Directly profiling intact Staphylococcus aureus in water and foods via enzymatic cleavage aptasensor. Lu Y; Yuan Z; Bai J; Lin Q; Deng R; Luo A; Chi Y; Deng S; He Q Anal Chim Acta; 2020 Oct; 1132():28-35. PubMed ID: 32980108 [TBL] [Abstract][Full Text] [Related]
2. Multiple amplification-based fluorometric aptasensor for highly sensitive detection of Staphylococcus aureus. Chen W; Zhang Y; Lai Q; Li Y; Liu Z Appl Microbiol Biotechnol; 2022 Oct; 106(19-20):6733-6743. PubMed ID: 36058939 [TBL] [Abstract][Full Text] [Related]
3. An ultrasensitive electrochemical aptasensor using Tyramide-assisted enzyme multiplication for the detection of Staphylococcus aureus. Nguyen TT; Gu MB Biosens Bioelectron; 2023 May; 228():115199. PubMed ID: 36906992 [TBL] [Abstract][Full Text] [Related]
4. A fluorescent aptasensor for Staphylococcus aureus based on strand displacement amplification and self-assembled DNA hexagonal structure. Cai R; Yin F; Chen H; Tian Y; Zhou N Mikrochim Acta; 2020 Apr; 187(5):304. PubMed ID: 32350613 [TBL] [Abstract][Full Text] [Related]
5. Upconversion nanoparticles-based FRET system for sensitive detection of Staphylococcus aureus. Ouyang Q; Yang Y; Ali S; Wang L; Li H; Chen Q Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 255():119734. PubMed ID: 33812237 [TBL] [Abstract][Full Text] [Related]
6. A transcription aptasensor: amplified, label-free and culture-independent detection of foodborne pathogens via light-up RNA aptamers. Sheng L; Lu Y; Deng S; Liao X; Zhang K; Ding T; Gao H; Liu D; Deng R; Li J Chem Commun (Camb); 2019 Aug; 55(68):10096-10099. PubMed ID: 31380872 [TBL] [Abstract][Full Text] [Related]
7. Rapid detection of foodborne pathogens in diverse foodstuffs by universal electrochemical aptasensor based on UiO-66 and methylene blue composites. Dai G; Yao H; Yang L; Ding Y; Du S; Shen H; Mo F Food Chem; 2023 Oct; 424():136244. PubMed ID: 37244183 [TBL] [Abstract][Full Text] [Related]
9. An innovative dual recognition aptasensor for specific detection of Staphylococcus aureus based on Au/Fe El-Wekil MM; Halby HM; Darweesh M; Ali ME; Ali R Sci Rep; 2022 Jul; 12(1):12502. PubMed ID: 35869107 [TBL] [Abstract][Full Text] [Related]
10. Ultrasensitive Fluorometric Angling Determination of Cui F; Sun J; de Dieu Habimana J; Yang X; Ji J; Zhang Y; Lei H; Li Z; Zheng J; Fan M; Sun X Anal Chem; 2019 Nov; 91(22):14681-14690. PubMed ID: 31617347 [TBL] [Abstract][Full Text] [Related]
11. Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus. Ranjbar S; Shahrokhian S Bioelectrochemistry; 2018 Oct; 123():70-76. PubMed ID: 29729642 [TBL] [Abstract][Full Text] [Related]
12. Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer. Chinnappan R; AlAmer S; Eissa S; Rahamn AA; Abu Salah KM; Zourob M Mikrochim Acta; 2017 Dec; 185(1):61. PubMed ID: 29594712 [TBL] [Abstract][Full Text] [Related]
13. Multi-aptamer-mediated hairpin allosteric and aptamer-assisted CRISPR system for detection of S. pneumoniae and S. aureus. Zhang L; Xu X; Cao L; Zhu Z; Ding Y; Jiang H; Li B; Liu J Mikrochim Acta; 2023 Dec; 191(1):29. PubMed ID: 38095724 [TBL] [Abstract][Full Text] [Related]
14. Dual-signal and one-step monitoring of Staphylococcus aureus in milk using hybridization chain reaction based fluorescent sensor. Zhang Y; Gao L; Han J; Miao X Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123191. PubMed ID: 37517267 [TBL] [Abstract][Full Text] [Related]
15. Aptamer-based Cas14a1 biosensor for amplification-free live pathogenic detection. Wei Y; Tao Z; Wan L; Zong C; Wu J; Tan X; Wang B; Guo Z; Zhang L; Yuan H; Wang P; Yang Z; Wan Y Biosens Bioelectron; 2022 Sep; 211():114282. PubMed ID: 35597144 [TBL] [Abstract][Full Text] [Related]
16. Spagnolo S; Davoudian K; De La Franier B; Hianik T; Thompson M Biosensors (Basel); 2023 Jun; 13(6):. PubMed ID: 37366979 [TBL] [Abstract][Full Text] [Related]
17. Development of An Impedimetric Aptasensor for the Detection of Staphylococcus aureus. Reich P; Stoltenburg R; Strehlitz B; Frense D; Beckmann D Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29160851 [TBL] [Abstract][Full Text] [Related]
18. Vancomycin recognition and induced-aggregation of the Au nanoparticles through freeze-thaw for foodborne pathogen Staphylococcus aureus detection. Sun R; Zou H; Zhang Y; Zhang X; Chen L; Lv R; Sheng R; Du T; Li Y; Wang H; Qi Y Anal Chim Acta; 2022 Jan; 1190():339253. PubMed ID: 34857141 [TBL] [Abstract][Full Text] [Related]
19. Fluorescent aptasensor for highly sensitive detection of Staphylococcus aureus based on dual-amplification strategy by integrating DNA walking and hybridization chain reaction. Zhang J; Mao B; Fan Y; Zhou M; Wen H; Huang B; Lu K; Ren J Talanta; 2024 Apr; 270():125624. PubMed ID: 38190790 [TBL] [Abstract][Full Text] [Related]
20. A dual-photoelectrode fuel cell-driven self-powered aptasensor based on the 1D/2D In Li Y; Tan J; Wang M; Jia Q; Zhang S; Wang M; Zhang Z Anal Chim Acta; 2023 Sep; 1272():341473. PubMed ID: 37355319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]