These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32980414)

  • 1. Suitability of organic solvent and cholinium based ionic liquid activated novel lignolytic enzymes of H. aswanensis for enhanced Kalson lignin degradation.
    Chauhan AK; Choudhury B
    Int J Biol Macromol; 2020 Dec; 165(Pt A):107-117. PubMed ID: 32980414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic dyes degradation using lignolytic enzymes produced from Halopiger aswanensis strain ABC_IITR by Solid State Fermentation.
    Chauhan AK; Choudhury B
    Chemosphere; 2021 Jun; 273():129671. PubMed ID: 33517115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient, environmentally-friendly and specific valorization of lignin: promising role of non-radical lignolytic enzymes.
    Wang W; Zhang C; Sun X; Su S; Li Q; Linhardt RJ
    World J Microbiol Biotechnol; 2017 Jun; 33(6):125. PubMed ID: 28540631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring lignin depolymerization by a bi-enzyme system containing aryl alcohol oxidase and lignin peroxidase in aqueous biocompatible ionic liquids.
    Liu E; Segato F; Prade RA; Wilkins MR
    Bioresour Technol; 2021 Oct; 338():125564. PubMed ID: 34284293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of organic solvent on the separation of an ionic liquid from a lignin-ionic liquid mixture.
    Weerachanchai P; Lim KH; Lee JM
    Bioresour Technol; 2014 Mar; 156():404-7. PubMed ID: 24534440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid state fermentation of Achras zapota lignocellulose by Phanerochaete chrysosporium.
    Ganesh Kumar A; Sekaran G; Krishnamoorthy S
    Bioresour Technol; 2006 Sep; 97(13):1521-8. PubMed ID: 16122921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement in multiple lignolytic enzymes production for optimized lignin degradation and selectivity in fungal pretreatment of sweet sorghum bagasse.
    Mishra V; Jana AK; Jana MM; Gupta A
    Bioresour Technol; 2017 Jul; 236():49-59. PubMed ID: 28390277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into lignin degradation and its potential industrial applications.
    Abdel-Hamid AM; Solbiati JO; Cann IK
    Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of laccase activity in cholinium-based ionic liquids using experimental and molecular dynamics techniques.
    Chan KK; Pereira AF; Valente AI; Tavares APM; Coutinho JAP; Ooi CW
    Int J Biol Macromol; 2024 Oct; 277(Pt 4):134443. PubMed ID: 39217672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: Biomass fractionation, enzymatic digestion and ionic liquid reuse.
    An YX; Zong MH; Wu H; Li N
    Bioresour Technol; 2015 Sep; 192():165-71. PubMed ID: 26026293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid-catalyzed hydrolysis of lignin β-O-4 linkages in ionic liquid solvents: a computational mechanistic study.
    Janesko BG
    Phys Chem Chem Phys; 2014 Mar; 16(11):5423-33. PubMed ID: 24509442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of ligninolytic enzymes by solid-state fermentation using Pleurotus eryngii.
    Akpinar M; Urek RO
    Prep Biochem Biotechnol; 2012; 42(6):582-97. PubMed ID: 23030469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual utility of a novel, copper enhanced laccase from Trichoderma aureoviridae.
    Khambhaty Y; Ananth S; Sreeram KJ; Rao JR; Nair BU
    Int J Biol Macromol; 2015 Nov; 81():69-75. PubMed ID: 26231326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of Lignin-Degrading Enzymes.
    Xiao J; Zhang S; Chen G
    Protein Pept Lett; 2020; 27(7):574-581. PubMed ID: 31868142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of advanced lignin valorization based on various types of lignolytic enzymes and microbes.
    Shin SK; Ko YJ; Hyeon JE; Han SO
    Bioresour Technol; 2019 Oct; 289():121728. PubMed ID: 31277889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lignolytic Enzymes of a Mushroom Stereum ostrea Isolated from Wood Logs.
    Praveen K; Viswanath B; Usha KY; Pallavi H; Venkata Subba Reddy G; Naveen M; Rajasekhar Reddy B
    Enzyme Res; 2011; 2011():749518. PubMed ID: 21941632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst.
    Cox BJ; Ekerdt JG
    Bioresour Technol; 2012 Aug; 118():584-8. PubMed ID: 22698446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignin Peroxidases, Manganese Peroxidases, and Other Ligninolytic Enzymes Produced by Phlebia radiata during Solid-State Fermentation of Wheat Straw.
    Vares T; Kalsi M; Hatakka A
    Appl Environ Microbiol; 1995 Oct; 61(10):3515-20. PubMed ID: 16535139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pretreatment of Lignocellulosic Biomass with Ionic Liquids and Ionic Liquid-Based Solvent Systems.
    Hou Q; Ju M; Li W; Liu L; Chen Y; Yang Q
    Molecules; 2017 Mar; 22(3):. PubMed ID: 28335528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved manganese-oxidizing activity of DypB, a peroxidase from a lignolytic bacterium.
    Singh R; Grigg JC; Qin W; Kadla JF; Murphy ME; Eltis LD
    ACS Chem Biol; 2013 Apr; 8(4):700-6. PubMed ID: 23305326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.