These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 32980415)

  • 1. Characterization on chemical and mechanical properties of silane treated fish tail palm fibres.
    Sabarinathan P; Rajkumar K; Annamalai VE; Vishal K
    Int J Biol Macromol; 2020 Nov; 163():2457-2464. PubMed ID: 32980415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kigelia africana fruit biofibre polysaccharide extraction and biofibre development by silane chemical treatment.
    Vishal K; Rajkumar K; Nitin MS; Sabarinathan P
    Int J Biol Macromol; 2022 Jun; 209(Pt A):1248-1259. PubMed ID: 35461872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact strength and flexural properties enhancement of methacrylate silane treated oil palm mesocarp fiber reinforced biodegradable hybrid composites.
    Eng CC; Ibrahim NA; Zainuddin N; Ariffin H; Yunus WM
    ScientificWorldJournal; 2014; 2014():213180. PubMed ID: 25254230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of silane treated and untreated natural cellulosic fibre from corn stalk waste as potential reinforcement in polymer composites.
    Liu Y; Lv X; Bao J; Xie J; Tang X; Che J; Ma Y; Tong J
    Carbohydr Polym; 2019 Aug; 218():179-187. PubMed ID: 31221319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose.
    Haafiz MK; Hassan A; Zakaria Z; Inuwa IM; Islam MS; Jawaid M
    Carbohydr Polym; 2013 Oct; 98(1):139-45. PubMed ID: 23987327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of toughened windmill palm fibre with different chemical compositions.
    Chen C; Tan J; Wang X
    Carbohydr Polym; 2022 Dec; 297():119996. PubMed ID: 36184129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation of microcrystalline cellulose from oil palm fibres for food applications.
    Xiang LY; P Mohammed MA; Samsu Baharuddin A
    Carbohydr Polym; 2016 Sep; 148():11-20. PubMed ID: 27185110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose nanocrystals isolated from oil palm trunk.
    Lamaming J; Hashim R; Sulaiman O; Leh CP; Sugimoto T; Nordin NA
    Carbohydr Polym; 2015; 127():202-8. PubMed ID: 25965475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata).
    Ilyas RA; Sapuan SM; Ishak MR
    Carbohydr Polym; 2018 Feb; 181():1038-1051. PubMed ID: 29253930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites.
    Fiore V; Scalici T; Valenza A
    Carbohydr Polym; 2014 Jun; 106():77-83. PubMed ID: 24721053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromechanical modelling of oil palm empty fruit bunch fibres containing silica bodies.
    Omar FN; Hanipah SH; Xiang LY; Mohammed MAP; Baharuddin AS; Abdullah J
    J Mech Behav Biomed Mater; 2016 Sep; 62():106-118. PubMed ID: 27183430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds.
    Owolabi AF; Haafiz MK; Hossain MS; Hussin MH; Fazita MR
    Int J Biol Macromol; 2017 Feb; 95():1228-1234. PubMed ID: 27836655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugar palm (Arenga pinnata): Its fibres, polymers and composites.
    Ishak MR; Sapuan SM; Leman Z; Rahman MZ; Anwar UM; Siregar JP
    Carbohydr Polym; 2013 Jan; 91(2):699-710. PubMed ID: 23121967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction and Characterization of Natural Cellulosic Fiber from
    Diyana ZN; Jumaidin R; Selamat MZ; Alamjuri RH; Md Yusof FA
    Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883674
    [No Abstract]   [Full Text] [Related]  

  • 15. Extraction and characterization of a new natural cellulosic fiber from the Habara Plant Stem (HF) as potential reinforcement for polymer composites.
    Vijayakkannan K; Rajendran I
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):131818. PubMed ID: 38670191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical and Mechanical Characterization of Licorice Root and Palm Leaf Waste Incorporated into Poly(urethane-acrylate) (PUA).
    Gabrielli S; Pastore G; Stella F; Marcantoni E; Sarasini F; Tirillò J; Santulli C
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of raw and alkali treated new natural cellulosic fibres extracted from the aerial roots of banyan tree.
    Ganapathy T; Sathiskumar R; Senthamaraikannan P; Saravanakumar SS; Khan A
    Int J Biol Macromol; 2019 Oct; 138():573-581. PubMed ID: 31348971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites.
    Jumaidin R; Sapuan SM; Jawaid M; Ishak MR; Sahari J
    Int J Biol Macromol; 2017 Apr; 97():606-615. PubMed ID: 28109810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre.
    C S JC; George N; Narayanankutty SK
    Carbohydr Polym; 2016 May; 142():158-66. PubMed ID: 26917386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time.
    Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H
    Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.