BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32980611)

  • 1. Spatiotemporal pattern models for bioaccumulation of pesticides in common herbaceous and woody plants.
    Li Z
    J Environ Manage; 2020 Dec; 276():111334. PubMed ID: 32980611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping Plant Bioaccumulation Potentials of Pesticides from Soil Using Satellite-Based Canopy Transpiration Rates.
    Li Z; Ai Z
    Environ Toxicol Chem; 2023 Jan; 42(1):117-129. PubMed ID: 36349963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal pattern models for bioaccumulation of pesticides in herbivores: An approximation theory for North American white-tailed deer.
    Li Z
    Sci Total Environ; 2020 Oct; 737():140271. PubMed ID: 32783856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new pseudo-partition coefficient based on a weather-adjusted multicomponent model for mushroom uptake of pesticides from soil.
    Li Z
    Environ Pollut; 2020 Jan; 256():113372. PubMed ID: 31672361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling pesticides in global surface soils: Evaluating spatiotemporal patterns for USEtox-based steady-state concentrations.
    Li Z; Niu S
    Sci Total Environ; 2021 Oct; 791():148412. PubMed ID: 34412385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing potential soil pollution from plant waste disposal: A modeling analysis of pesticide contamination.
    Li Z
    Sci Total Environ; 2024 Jan; 907():167859. PubMed ID: 37852498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake kinetics of pesticides chlorpyrifos and tebuconazole in the earthworm Eisenia andrei in two different soils.
    Svobodová M; Šmídová K; Hvězdová M; Hofman J
    Environ Pollut; 2018 May; 236():257-264. PubMed ID: 29414347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalizing routes of plant exposure to pesticides by plant uptake models to assess pesticide application efficiency.
    Zhang X; Li Z
    Ecotoxicol Environ Saf; 2023 Jun; 262():115145. PubMed ID: 37327522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling pesticide residues in nectar and pollen in support of pesticide exposure assessment for honeybees: A generic modeling approach.
    Li Z
    Ecotoxicol Environ Saf; 2022 May; 236():113507. PubMed ID: 35421823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New implication of pesticide regulatory management in soils: Average vs ceiling legal limits.
    Li Z
    Sci Total Environ; 2022 Apr; 818():151705. PubMed ID: 34793794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Considering degradation kinetics of pesticides in plant uptake models: proof of concept for potato.
    Li Z; Fantke P
    Pest Manag Sci; 2023 Mar; 79(3):1154-1163. PubMed ID: 36371622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence and distribution of organic ultraviolet absorbents in soils and plants from a typical industrial area in South China.
    Lyu Y; Li G; He Y; Li Y; Tang Z
    Sci Total Environ; 2022 Nov; 846():157383. PubMed ID: 35843326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved plant bioconcentration modeling of pesticides: The role of periderm dynamics.
    Xiao S; Li Z; Fantke P
    Pest Manag Sci; 2021 Nov; 77(11):5096-5108. PubMed ID: 34236751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting pesticide residues in pod fruits with a modified peel-like uptake model: A green pea demonstration.
    Li Z
    Ecotoxicol Environ Saf; 2023 Oct; 264():115421. PubMed ID: 37657391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling pesticides in global surface soils: Exploring relationships between continuous and discrete emission patterns.
    Li Z; Niu S
    Sci Total Environ; 2021 Dec; 798():149309. PubMed ID: 34375253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodegradation of pesticides on plant and soil surfaces.
    Katagi T
    Rev Environ Contam Toxicol; 2004; 182():1-189. PubMed ID: 15217019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A geo-referenced modeling environment for ecosystem risk assessment: organophosphate pesticides in an agriculturally dominated watershed.
    Luo Y; Zhang M
    J Environ Qual; 2009; 38(2):664-74. PubMed ID: 19244487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing bioaccumulation behaviour of hydrophobic organic contaminants in a tropical urban catchment.
    Wang Q; Kelly BC
    J Hazard Mater; 2018 Sep; 358():366-375. PubMed ID: 30005248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France).
    Vernier F; Leccia-Phelpin O; Lescot JM; Minette S; Miralles A; Barberis D; Scordia C; Kuentz-Simonet V; Tonneau JP
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):6923-6950. PubMed ID: 27726081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry.
    Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B
    J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.