These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 32980731)

  • 61. Characteristics of co-hydrothermal carbonization on polyvinyl chloride wastes with bamboo.
    Yao Z; Ma X
    Bioresour Technol; 2018 Jan; 247():302-309. PubMed ID: 28950139
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Hydrothermal carbonization and torrefaction of grape pomace: a comparative evaluation.
    Pala M; Kantarli IC; Buyukisik HB; Yanik J
    Bioresour Technol; 2014 Jun; 161():255-62. PubMed ID: 24709539
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Revealing the heating value characteristics of sludge-based hydrochar in hydrothermal process: from perspective of hydrolysate.
    Zhang H; Xue G; Chen H; Li X; Chen S
    Water Res; 2021 Jun; 198():117170. PubMed ID: 33945948
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Enzyme-assisted hydrothermal treatment of food waste for co-production of hydrochar and bio-oil.
    Kaushik R; Parshetti GK; Liu Z; Balasubramanian R
    Bioresour Technol; 2014 Sep; 168():267-74. PubMed ID: 24709530
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hydrothermal carbonization of household wet waste - characterization of hydrochar and process wastewater stream.
    Gupta D; Mahajani SM; Garg A
    Bioresour Technol; 2021 Dec; 342():125972. PubMed ID: 34583114
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Hydrothermal carbonization of municipal waste streams.
    Berge ND; Ro KS; Mao J; Flora JR; Chappell MA; Bae S
    Environ Sci Technol; 2011 Jul; 45(13):5696-703. PubMed ID: 21671644
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Co-hydrothermal carbonization of corn stalk and swine manure: Combustion behavior of hydrochar by thermogravimetric analysis.
    Lang Q; Zhang B; Liu Z; Chen Z; Xia Y; Li D; Ma J; Gai C
    Bioresour Technol; 2019 Jan; 271():75-83. PubMed ID: 30265955
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Hydrothermal carbonization of Opuntia ficus-indica cladodes: Role of process parameters on hydrochar properties.
    Volpe M; Goldfarb JL; Fiori L
    Bioresour Technol; 2018 Jan; 247():310-318. PubMed ID: 28950140
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Hydrothermal Carbonization of
    Setsepu RL; Abdulsalam J; Weiersbye IM; Bada SO
    ACS Omega; 2021 Aug; 6(31):20292-20302. PubMed ID: 34395977
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Hydrothermal carbonization of arecanut husk biomass: fuel properties and sorption of metals.
    Ramesh S; Sundararaju P; Banu KSP; Karthikeyan S; Doraiswamy U; Soundarapandian K
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3751-3761. PubMed ID: 30539398
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Hydrothermal Conversion of Food Waste to Carbonaceous Solid Fuel-A Review of Recent Developments.
    Khan MA; Hameed BH; Siddiqui MR; Alothman ZA; Alsohaimi IH
    Foods; 2022 Dec; 11(24):. PubMed ID: 36553775
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Co-hydrothermal carbonization of lignocellulosic biomass and swine manure: Hydrochar properties and heavy metal transformation behavior.
    Lang Q; Guo Y; Zheng Q; Liu Z; Gai C
    Bioresour Technol; 2018 Oct; 266():242-248. PubMed ID: 29982044
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Upgradation of chemical, fuel, thermal, and structural properties of rice husk through microwave-assisted hydrothermal carbonization.
    Nizamuddin S; Siddiqui MTH; Baloch HA; Mubarak NM; Griffin G; Madapusi S; Tanksale A
    Environ Sci Pollut Res Int; 2018 Jun; 25(18):17529-17539. PubMed ID: 29663294
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Influence of solid content and maximum temperature on the performance of a hydrothermal carbonization reactor.
    Zabaleta I; Marchetti P; Lohri CR; Zurbrügg C
    Environ Technol; 2017 Nov; 38(22):2856-2865. PubMed ID: 28067116
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comparative Evaluation of Hydrothermal Carbonization and Low Temperature Pyrolysis of Eucommia ulmoides Oliver for the Production of Solid Biofuel.
    Wang Y; Qiu L; Zhu M; Sun G; Zhang T; Kang K
    Sci Rep; 2019 Apr; 9(1):5535. PubMed ID: 30940831
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hydrothermal carbonization coupling with liquid dimethyl ether extraction pretreatment of sewage sludge: Hydrochar performance improvement and low-nitrogen biocrude production.
    Wang C; Gui B; Wu C; Sun J; Ling X; Zhang H; Zuo X
    Chemosphere; 2023 Feb; 313():137581. PubMed ID: 36549507
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Energy and nutrient recovery by spent mushroom substrate-assisted hydrothermal carbonization of sewage sludge.
    Shan G; Li W; Bao S; Hu X; Liu J; Zhu L; Tan W
    Waste Manag; 2023 Jan; 155():192-198. PubMed ID: 36379168
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Hydrochar production from watermelon peel by hydrothermal carbonization.
    Chen X; Lin Q; He R; Zhao X; Li G
    Bioresour Technol; 2017 Oct; 241():236-243. PubMed ID: 28570889
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The influence of manure feedstock, slow pyrolysis, and hydrothermal temperature on manure thermochemical and combustion properties.
    Zhou S; Liang H; Han L; Huang G; Yang Z
    Waste Manag; 2019 Apr; 88():85-95. PubMed ID: 31079653
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Involvement of the organics in aqueous phase of bio-oil in hydrothermal carbonization of lignin.
    Lin H; Li Q; Zhang S; Zhang L; Hu G; Hu X
    Bioresour Technol; 2022 May; 351():127055. PubMed ID: 35339655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.