BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 32980777)

  • 1. Disruption of energy utilization in diabetic cardiomyopathy; a mini review.
    Nirengi S; Peres Valgas da Silva C; Stanford KI
    Curr Opin Pharmacol; 2020 Oct; 54():82-90. PubMed ID: 32980777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Empagliflozin and Liraglutide Differentially Modulate Cardiac Metabolism in Diabetic Cardiomyopathy in Rats.
    Trang NN; Chung CC; Lee TW; Cheng WL; Kao YH; Huang SY; Lee TI; Chen YJ
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33503985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of peroxisome proliferator-activated receptor-α on diabetic cardiomyopathy.
    Wang L; Cai Y; Jian L; Cheung CW; Zhang L; Xia Z
    Cardiovasc Diabetol; 2021 Jan; 20(1):2. PubMed ID: 33397369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lessons from the Trials for the Desirable Effects of Sodium Glucose Co-Transporter 2 Inhibitors on Diabetic Cardiovascular Events and Renal Dysfunction.
    Wakisaka M; Kamouchi M; Kitazono T
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31726765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Empagliflozin improves mitochondrial dysfunction in diabetic cardiomyopathy by modulating ketone body metabolism and oxidative stress.
    Cai W; Chong K; Huang Y; Huang C; Yin L
    Redox Biol; 2024 Feb; 69():103010. PubMed ID: 38160540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatments for skeletal muscle abnormalities in heart failure: sodium-glucose transporter 2 and ketone bodies.
    Takada S; Sabe H; Kinugawa S
    Am J Physiol Heart Circ Physiol; 2022 Feb; 322(2):H117-H128. PubMed ID: 34860594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mTORC1 and SGLT2 Inhibitors-A Therapeutic Perspective for Diabetic Cardiomyopathy.
    Saha S; Fang X; Green CD; Das A
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SGLT2 Inhibitors: A Novel Player in the Treatment and Prevention of Diabetic Cardiomyopathy.
    Li N; Zhou H
    Drug Des Devel Ther; 2020; 14():4775-4788. PubMed ID: 33192053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced fatty acid uptake aggravates cardiac contractile dysfunction in streptozotocin-induced diabetic cardiomyopathy.
    Umbarawan Y; Kawakami R; Syamsunarno MRAA; Koitabashi N; Obinata H; Yamaguchi A; Hanaoka H; Hishiki T; Hayakawa N; Sunaga H; Matsui H; Kurabayashi M; Iso T
    Sci Rep; 2020 Nov; 10(1):20809. PubMed ID: 33257783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empagliflozin improves left ventricular diastolic function of db/db mice.
    Moellmann J; Klinkhammer BM; Droste P; Kappel B; Haj-Yehia E; Maxeiner S; Artati A; Adamski J; Boor P; Schütt K; Lopaschuk GD; Verma S; Marx N; Lehrke M
    Biochim Biophys Acta Mol Basis Dis; 2020 Aug; 1866(8):165807. PubMed ID: 32353614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen sulfide plays a potential alternative for the treatment of metabolic disorders of diabetic cardiomyopathy.
    Deng NH; Luo W; Gui DD; Yan BJ; Zhou K; Tian KJ; Ren Z; Xiong WH; Jiang ZS
    Mol Cell Biochem; 2022 Jan; 477(1):255-265. PubMed ID: 34687394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Contribution of Cardiac Fatty Acid Oxidation to Diabetic Cardiomyopathy Severity.
    Karwi QG; Sun Q; Lopaschuk GD
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy.
    Fillmore N; Mori J; Lopaschuk GD
    Br J Pharmacol; 2014 Apr; 171(8):2080-90. PubMed ID: 24147975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic abnormalities of the heart in type II diabetes.
    Amaral N; Okonko DO
    Diab Vasc Dis Res; 2015 Jul; 12(4):239-48. PubMed ID: 25941161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets.
    Sung MM; Hamza SM; Dyck JR
    Antioxid Redox Signal; 2015 Jun; 22(17):1606-30. PubMed ID: 25808033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Streptozotocin-induced type II diabetic rat administered with nonobesogenic high-fat diet is highly susceptible to myocardial ischemia-reperfusion injury: An insight into the function of mitochondria.
    Ansari M; Gopalakrishnan S; Kurian GA
    J Cell Physiol; 2019 Apr; 234(4):4104-4114. PubMed ID: 30191974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Lipid Overload on Heart in Metabolic Diseases.
    Yan A; Xie G; Ding X; Wang Y; Guo L
    Horm Metab Res; 2021 Dec; 53(12):771-778. PubMed ID: 34891207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid metabolism and its implications for type 1 diabetes-associated cardiomyopathy.
    Ritchie RH; Zerenturk EJ; Prakoso D; Calkin AC
    J Mol Endocrinol; 2017 May; 58(4):R225-R240. PubMed ID: 28373293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The diabetic heart utilizes ketone bodies as an energy source.
    Mizuno Y; Harada E; Nakagawa H; Morikawa Y; Shono M; Kugimiya F; Yoshimura M; Yasue H
    Metabolism; 2017 Dec; 77():65-72. PubMed ID: 29132539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac Energy Metabolism in Heart Failure.
    Lopaschuk GD; Karwi QG; Tian R; Wende AR; Abel ED
    Circ Res; 2021 May; 128(10):1487-1513. PubMed ID: 33983836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.