BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 32980967)

  • 1. Running mechanics and leg muscle activity patterns during early and late acceleration phases of repeated treadmill sprints in male recreational athletes.
    Girard O; Brocherie F; Morin JB; Millet GP; Hansen C
    Eur J Appl Physiol; 2020 Dec; 120(12):2785-2796. PubMed ID: 32980967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuro-mechanical and metabolic adjustments to the repeated anaerobic sprint test in professional football players.
    Brocherie F; Millet GP; Girard O
    Eur J Appl Physiol; 2015 May; 115(5):891-903. PubMed ID: 25481506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Four Sections for Analyzing Running Mechanics Alterations During Repeated Treadmill Sprints.
    Girard O; Brocherie F; Morin JB; Degache F; Millet GP
    J Appl Biomech; 2015 Oct; 31(5):389-95. PubMed ID: 26033254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Custom foot orthoses improve performance, but do not modify the biomechanical manifestation of fatigue, during repeated treadmill sprints.
    Girard O; Morin JB; Ryu JH; Van Alsenoy K
    Eur J Appl Physiol; 2020 Sep; 120(9):2037-2045. PubMed ID: 32607818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lower limb mechanical asymmetry during repeated treadmill sprints.
    Girard O; Brocherie F; Morin JB; Millet GP
    Hum Mov Sci; 2017 Apr; 52():203-214. PubMed ID: 28254534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Running mechanical alterations during repeated treadmill sprints in hot versus hypoxic environments. A pilot study.
    Girard O; Brocherie F; Morin JB; Millet GP
    J Sports Sci; 2016; 34(12):1190-8. PubMed ID: 26473996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repeated sprinting on natural grass impairs vertical stiffness but does not alter plantar loading in soccer players.
    Girard O; Racinais S; Kelly L; Millet GP; Brocherie F
    Eur J Appl Physiol; 2011 Oct; 111(10):2547-55. PubMed ID: 21369733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technical ability of force application as a determinant factor of sprint performance.
    Morin JB; Edouard P; Samozino P
    Med Sci Sports Exerc; 2011 Sep; 43(9):1680-8. PubMed ID: 21364480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute Kinematic and Kinetic Adaptations to Wearable Resistance During Sprint Acceleration.
    Macadam P; Simperingham KD; Cronin JB
    J Strength Cond Res; 2017 May; 31(5):1297-1304. PubMed ID: 27548784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic demands of sprinting shift across the acceleration phase: Novel analysis of entire force waveforms.
    Colyer SL; Nagahara R; Salo AIT
    Scand J Med Sci Sports; 2018 Jul; 28(7):1784-1792. PubMed ID: 29630747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sprint Acceleration Mechanics: The Major Role of Hamstrings in Horizontal Force Production.
    Morin JB; Gimenez P; Edouard P; Arnal P; Jiménez-Reyes P; Samozino P; Brughelli M; Mendiguchia J
    Front Physiol; 2015; 6():404. PubMed ID: 26733889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute changes in kinematic and muscle activity patterns in habitually shod rearfoot strikers while running barefoot.
    Strauts J; Vanicek N; Halaki M
    J Sports Sci; 2016; 34(1):75-87. PubMed ID: 25908260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetries during repeated treadmill sprints in elite female Rugby Sevens players.
    Girard O; Racinais S; Couderc A; Morin JB; Ryu JH; Piscione J; Brocherie F
    Sports Biomech; 2023 Jul; 22(7):863-873. PubMed ID: 32538689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sprint Acceleration Mechanics in Fatigue Conditions: Compensatory Role of Gluteal Muscles in Horizontal Force Production and Potential Protection of Hamstring Muscles.
    Edouard P; Mendiguchia J; Lahti J; Arnal PJ; Gimenez P; Jiménez-Reyes P; Brughelli M; Samozino P; Morin JB
    Front Physiol; 2018; 9():1706. PubMed ID: 30555346
    [No Abstract]   [Full Text] [Related]  

  • 16. The contribution of step characteristics to sprint running performance in high-level male and female athletes.
    Debaere S; Jonkers I; Delecluse C
    J Strength Cond Res; 2013 Jan; 27(1):116-24. PubMed ID: 22395270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association of Sprint Performance With Ground Reaction Forces During Acceleration and Maximal Speed Phases in a Single Sprint.
    Nagahara R; Mizutani M; Matsuo A; Kanehisa H; Fukunaga T
    J Appl Biomech; 2018 Apr; 34(2):104-110. PubMed ID: 28952906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle Activity, Leg Stiffness, and Kinematics During Unresisted and Resisted Sprinting Conditions.
    Zabaloy S; Carlos-Vivas J; Freitas TT; Pareja-Blanco F; Loturco I; Comyns T; Gálvez-González J; Alcaraz PE
    J Strength Cond Res; 2022 Jul; 36(7):1839-1846. PubMed ID: 32658032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors that differentiate acceleration ability in field sport athletes.
    Lockie RG; Murphy AJ; Knight TJ; Janse de Jonge XA
    J Strength Cond Res; 2011 Oct; 25(10):2704-14. PubMed ID: 21878822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations to the orientation of the ground reaction force vector affect sprint acceleration performance in team sports athletes.
    Bezodis NE; North JS; Razavet JL
    J Sports Sci; 2017 Sep; 35(18):1-8. PubMed ID: 27700312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.