These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 32981350)

  • 1. Association Between Magnetic Resonance Imaging-Based Spinal Morphometry and Sensorimotor Behavior in a Hemicontusion Model of Incomplete Cervical Spinal Cord Injury in Rats.
    Chitturi J; Sanganahalli BG; Herman P; Hyder F; Ni L; Elkabes S; Heary R; Kannurpatti SS
    Brain Connect; 2020 Nov; 10(9):479-489. PubMed ID: 32981350
    [No Abstract]   [Full Text] [Related]  

  • 2. Supraspinal Sensorimotor and Pain-Related Reorganization after a Hemicontusion Rat Cervical Spinal Cord Injury.
    Sanganahalli BG; Chitturi J; Herman P; Elkabes S; Heary R; Hyder F; Kannurpatti SS
    J Neurotrauma; 2021 Dec; 38(24):3393-3405. PubMed ID: 34714150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-hemicord spinal fiber reorganization associates with cortical sensory and motor network expansion in the rat model of hemicontusion cervical spinal cord injury.
    Mihailovic JM; Sanganahalli BG; Hyder F; Chitturi J; Elkabes S; Heary RF; Kannurpatti SS
    Neurosci Lett; 2024 Jan; 820():137607. PubMed ID: 38141752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vagus Nerve Stimulation Paired With Rehabilitative Training Enhances Motor Recovery After Bilateral Spinal Cord Injury to Cervical Forelimb Motor Pools.
    Darrow MJ; Torres M; Sosa MJ; Danaphongse TT; Haider Z; Rennaker RL; Kilgard MP; Hays SA
    Neurorehabil Neural Repair; 2020 Mar; 34(3):200-209. PubMed ID: 31969052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generating level-dependent models of cervical and thoracic spinal cord injury: Exploring the interplay of neuroanatomy, physiology, and function.
    Wilcox JT; Satkunendrarajah K; Nasirzadeh Y; Laliberte AM; Lip A; Cadotte DW; Foltz WD; Fehlings MG
    Neurobiol Dis; 2017 Sep; 105():194-212. PubMed ID: 28578003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Injury Severity and Neurological Recovery after Acute Cervical Spinal Cord Injury: A Comparison of Cerebrospinal Fluid and Magnetic Resonance Imaging Biomarkers.
    Dalkilic T; Fallah N; Noonan VK; Salimi Elizei S; Dong K; Belanger L; Ritchie L; Tsang A; Bourassa-Moreau E; Heran MKS; Paquette SJ; Ailon T; Dea N; Street J; Fisher CG; Dvorak MF; Kwon BK
    J Neurotrauma; 2018 Feb; 35(3):435-445. PubMed ID: 29037121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor recovery at 6 months after admission is related to structural and functional reorganization of the spine and brain in patients with spinal cord injury.
    Hou J; Xiang Z; Yan R; Zhao M; Wu Y; Zhong J; Guo L; Li H; Wang J; Wu J; Sun T; Liu H
    Hum Brain Mapp; 2016 Jun; 37(6):2195-209. PubMed ID: 26936834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined SCI and TBI: recovery of forelimb function after unilateral cervical spinal cord injury (SCI) is retarded by contralateral traumatic brain injury (TBI), and ipsilateral TBI balances the effects of SCI on paw placement.
    Inoue T; Lin A; Ma X; McKenna SL; Creasey GH; Manley GT; Ferguson AR; Bresnahan JC; Beattie MS
    Exp Neurol; 2013 Oct; 248():136-47. PubMed ID: 23770071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eccentric rehabilitation induces white matter plasticity and sensorimotor recovery in chronic spinal cord injury.
    Faw TD; Lakhani B; Schmalbrock P; Knopp MV; Lohse KR; Kramer JLK; Liu H; Nguyen HT; Phillips EG; Bratasz A; Fisher LC; Deibert RJ; Boyd LA; McTigue DM; Basso DM
    Exp Neurol; 2021 Dec; 346():113853. PubMed ID: 34464653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a graded cervical hemicontusion spinal cord injury model in adult male rats.
    Dunham KA; Siriphorn A; Chompoopong S; Floyd CL
    J Neurotrauma; 2010 Nov; 27(11):2091-106. PubMed ID: 21087156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Acute Diffusion Tensor Imaging and Conventional Magnetic Resonance Parameters in Predicting Long-Term Outcome after Blunt Cervical Spinal Cord Injury.
    Shanmuganathan K; Zhuo J; Bodanapally UK; Kuladeep S; Aarabi B; Adams J; Miller C; Gullapallie RP; Menakar J
    J Neurotrauma; 2020 Feb; 37(3):458-465. PubMed ID: 31190610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prolonged acute intermittent hypoxia improves forelimb reach-to-grasp function in a rat model of chronic cervical spinal cord injury.
    Arnold BM; Toosi BM; Caine S; Mitchell GS; Muir GD
    Exp Neurol; 2021 Jun; 340():113672. PubMed ID: 33652030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can the acute magnetic resonance imaging features reflect neurologic prognosis in patients with cervical spinal cord injury?
    Matsushita A; Maeda T; Mori E; Yuge I; Kawano O; Ueta T; Shiba K
    Spine J; 2017 Sep; 17(9):1319-1324. PubMed ID: 28501580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative MRI of rostral spinal cord and brain regions is predictive of functional recovery in acute spinal cord injury.
    Seif M; Curt A; Thompson AJ; Grabher P; Weiskopf N; Freund P
    Neuroimage Clin; 2018; 20():556-563. PubMed ID: 30175042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bilateral cervical contusion spinal cord injury: A mouse model to evaluate sensorimotor function.
    Reinhardt DR; Stehlik KE; Satkunendrarajah K; Kroner A
    Exp Neurol; 2020 Sep; 331():113381. PubMed ID: 32561411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whether Visual-related Structural and Functional Changes Occur in Brain of Patients with Acute Incomplete Cervical Cord Injury: A Multimodal Based MRI Study.
    Chen Q; Zheng W; Chen X; Li X; Wang L; Qin W; Li K; Chen N
    Neuroscience; 2018 Nov; 393():284-294. PubMed ID: 30326291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute Magnetic Resonance Imaging Predictors of Chronic Motor Function and Tissue Sparing in Rat Cervical Spinal Cord Injury.
    Lee SY; Schmit BD; Kurpad SN; Budde MD
    J Neurotrauma; 2022 Dec; 39(23-24):1727-1740. PubMed ID: 35708112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical and Subcortical Effects of Transcutaneous Spinal Cord Stimulation in Humans with Tetraplegia.
    Benavides FD; Jo HJ; Lundell H; Edgerton VR; Gerasimenko Y; Perez MA
    J Neurosci; 2020 Mar; 40(13):2633-2643. PubMed ID: 31996455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Cervical Spinal Cord Hemi-Contusion Injury Model Based on Displacement Control in Non-Human Primates
    Liu J; Li R; Huang Z; Huang Z; Li Y; Wu X; Lin J; Jiang H; Cheng Y; Kong G; Wu X; Liu Q; Liu Y; Yang Z; Li R; Chen J; Fu J; Ramer MS; Kwon BK; Liu J; Kramer JLK; Tetzlaff W; Hu Y; Zhu Q
    J Neurotrauma; 2020 Aug; 37(15):1669-1686. PubMed ID: 32174266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rehabilitative training improves skilled forelimb motor function after cervical unilateral contusion spinal cord injury in rats.
    Lucas-Osma AM; Schmidt EKA; Vavrek R; Bennett DJ; Fouad K; Fenrich KK
    Behav Brain Res; 2022 Mar; 422():113731. PubMed ID: 34979221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.