These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 32981460)
1. Discovery of Drug-Like Ligands for the Mac1 Domain of SARS-CoV-2 Nsp3. Virdi RS; Bavisotto RV; Hopper NC; Vuksanovic N; Melkonian TR; Silvaggi NR; Frick DN SLAS Discov; 2020 Dec; 25(10):1162-1170. PubMed ID: 32981460 [TBL] [Abstract][Full Text] [Related]
2. Discovery of Drug-like Ligands for the Mac1 Domain of SARS-CoV-2 Nsp3. Virdi RS; Bavisotto RV; Hopper NC; Vuksanovic N; Melkonian TR; Silvaggi NR; Frick DN bioRxiv; 2020 Sep; ():. PubMed ID: 32676591 [TBL] [Abstract][Full Text] [Related]
3. High-Throughput Screening and Quantum Mechanics for Identifying Potent Inhibitors Against Mac1 Domain of SARS-CoV-2 Nsp3. Selvaraj C; Dinesh DC; Panwar U; Boura E; Singh SK IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1262-1270. PubMed ID: 33306471 [TBL] [Abstract][Full Text] [Related]
4. Targeting SARS-CoV-2 Nsp3 macrodomain structure with insights from human poly(ADP-ribose) glycohydrolase (PARG) structures with inhibitors. Brosey CA; Houl JH; Katsonis P; Balapiti-Modarage LPF; Bommagani S; Arvai A; Moiani D; Bacolla A; Link T; Warden LS; Lichtarge O; Jones DE; Ahmed Z; Tainer JA Prog Biophys Mol Biol; 2021 Aug; 163():171-186. PubMed ID: 33636189 [TBL] [Abstract][Full Text] [Related]
5. Comparison of Binding Site of Remdesivir and Its Metabolites with NSP12-NSP7-NSP8, and NSP3 of SARS CoV-2 Virus and Alternative Potential Drugs for COVID-19 Treatment. Jung LS; Gund TM; Narayan M Protein J; 2020 Dec; 39(6):619-630. PubMed ID: 33185784 [TBL] [Abstract][Full Text] [Related]
6. Xie S; Cao S; Wu J; Xie Z; Liu YT; Fu W; Zhao Q; Liu L; Yang L; Li J J Biomol Struct Dyn; 2024 Jul; 42(10):5229-5237. PubMed ID: 37349935 [TBL] [Abstract][Full Text] [Related]
7. The SARS-CoV-2 Conserved Macrodomain Is a Mono-ADP-Ribosylhydrolase. Alhammad YMO; Kashipathy MM; Roy A; Gagné JP; McDonald P; Gao P; Nonfoux L; Battaile KP; Johnson DK; Holmstrom ED; Poirier GG; Lovell S; Fehr AR J Virol; 2021 Jan; 95(3):. PubMed ID: 33158944 [TBL] [Abstract][Full Text] [Related]
8. Structure-Based High-Throughput Virtual Screening and Molecular Dynamics Simulation for the Discovery of Novel SARS-CoV-2 NSP3 Mac1 Domain Inhibitors. Yazdani B; Sirous H; Brogi S; Calderone V Viruses; 2023 Nov; 15(12):. PubMed ID: 38140532 [TBL] [Abstract][Full Text] [Related]
9. Discovery of compounds that inhibit SARS-CoV-2 Mac1-ADP-ribose binding by high-throughput screening. Roy A; Alhammad YM; McDonald P; Johnson DK; Zhuo J; Wazir S; Ferraris D; Lehtiö L; Leung AKL; Fehr AR Antiviral Res; 2022 Jul; 203():105344. PubMed ID: 35598780 [TBL] [Abstract][Full Text] [Related]
10. Molecular Basis for ADP-Ribose Binding to the Mac1 Domain of SARS-CoV-2 nsp3. Frick DN; Virdi RS; Vuksanovic N; Dahal N; Silvaggi NR Biochemistry; 2020 Jul; 59(28):2608-2615. PubMed ID: 32578982 [TBL] [Abstract][Full Text] [Related]
12. High-throughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors. Zhao Y; Du X; Duan Y; Pan X; Sun Y; You T; Han L; Jin Z; Shang W; Yu J; Guo H; Liu Q; Wu Y; Peng C; Wang J; Zhu C; Yang X; Yang K; Lei Y; Guddat LW; Xu W; Xiao G; Sun L; Zhang L; Rao Z; Yang H Protein Cell; 2021 Nov; 12(11):877-888. PubMed ID: 33864621 [TBL] [Abstract][Full Text] [Related]
13. A single inactivating amino acid change in the SARS-CoV-2 NSP3 Mac1 domain attenuates viral replication in vivo. Taha TY; Suryawanshi RK; Chen IP; Correy GJ; McCavitt-Malvido M; O'Leary PC; Jogalekar MP; Diolaiti ME; Kimmerly GR; Tsou CL; Gascon R; Montano M; Martinez-Sobrido L; Krogan NJ; Ashworth A; Fraser JS; Ott M PLoS Pathog; 2023 Aug; 19(8):e1011614. PubMed ID: 37651466 [TBL] [Abstract][Full Text] [Related]
14. Iterative computational design and crystallographic screening identifies potent inhibitors targeting the Nsp3 macrodomain of SARS-CoV-2. Gahbauer S; Correy GJ; Schuller M; Ferla MP; Doruk YU; Rachman M; Wu T; Diolaiti M; Wang S; Neitz RJ; Fearon D; Radchenko DS; Moroz YS; Irwin JJ; Renslo AR; Taylor JC; Gestwicki JE; von Delft F; Ashworth A; Ahel I; Shoichet BK; Fraser JS Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2212931120. PubMed ID: 36598939 [TBL] [Abstract][Full Text] [Related]
15. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp3 papain-like protease. Lim CT; Tan KW; Wu M; Ulferts R; Armstrong LA; Ozono E; Drury LS; Milligan JC; Zeisner TU; Zeng J; Weissmann F; Canal B; Bineva-Todd G; Howell M; O'Reilly N; Beale R; Kulathu Y; Labib K; Diffley JFX Biochem J; 2021 Jul; 478(13):2517-2531. PubMed ID: 34198325 [TBL] [Abstract][Full Text] [Related]
16. An ISG15-Based High-Throughput Screening Assay for Identification and Characterization of SARS-CoV-2 Inhibitors Targeting Papain-like Protease. Samrat SK; Kumar P; Liu Y; Chen K; Lee H; Li Z; Chen Y; Li H Viruses; 2024 Aug; 16(8):. PubMed ID: 39205213 [TBL] [Abstract][Full Text] [Related]
17. A computational evaluation of targeted oxidation strategy (TOS) for potential inhibition of SARS-CoV-2 by disulfiram and analogues. Xu L; Tong J; Wu Y; Zhao S; Lin BL Biophys Chem; 2021 Sep; 276():106610. PubMed ID: 34089978 [TBL] [Abstract][Full Text] [Related]
19. Design, synthesis and evaluation of inhibitors of the SARS-CoV-2 nsp3 macrodomain. Sherrill LM; Joya EE; Walker A; Roy A; Alhammad YM; Atobatele M; Wazir S; Abbas G; Keane P; Zhuo J; Leung AKL; Johnson DK; Lehtiö L; Fehr AR; Ferraris D Bioorg Med Chem; 2022 Aug; 67():116788. PubMed ID: 35597097 [TBL] [Abstract][Full Text] [Related]
20. Establishing an Analogue Based In Silico Pipeline in the Pursuit of Novel Inhibitory Scaffolds against the SARS Coronavirus 2 Papain-Like Protease. Hajbabaie R; Harper MT; Rahman T Molecules; 2021 Feb; 26(4):. PubMed ID: 33672721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]