These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32981972)

  • 1. An energy-stable mixed formulation for isogeometric analysis of incompressible hyper-elastodynamics.
    Liu J; Marsden AL; Tao Z
    Int J Numer Methods Eng; 2019 Nov; 120(8):937-963. PubMed ID: 32981972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robust and efficient iterative method for hyper-elastodynamics with nested block preconditioning.
    Liu J; Marsden AL
    J Comput Phys; 2019 Apr; 383():72-93. PubMed ID: 31595091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unified continuum and variational multiscale formulation for fluids, solids, and fluid-structure interaction.
    Liu J; Marsden AL
    Comput Methods Appl Mech Eng; 2018 Aug; 337():549-597. PubMed ID: 30505038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity.
    Vadala-Roth B; Acharya S; Patankar NA; Rossi S; Griffith BE
    Comput Methods Appl Mech Eng; 2020 Jun; 365():. PubMed ID: 32483394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quasi-incompressible and quasi-inextensible finite element analysis of fibrous soft biological tissues.
    Gültekin O; Rodoplu B; Dal H
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2357-2373. PubMed ID: 32556738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mixed finite element formulation for a non-linear, transversely isotropic material model for the cardiac tissue.
    Thorvaldsen T; Osnes H; Sundnes J
    Comput Methods Biomech Biomed Engin; 2005 Dec; 8(6):369-79. PubMed ID: 16393874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite Element Framework for Computational Fluid Dynamics in FEBio.
    Ateshian GA; Shim JJ; Maas SA; Weiss JA
    J Biomech Eng; 2018 Feb; 140(2):0210011-02100117. PubMed ID: 29238817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile stabilized finite element formulations for nearly and fully incompressible solid mechanics.
    Karabelas E; Haase G; Plank G; Augustin CM
    Comput Mech; 2020 Jan; 65(1):193-215. PubMed ID: 31975744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IETI - Isogeometric Tearing and Interconnecting.
    Kleiss SK; Pechstein C; Jüttler B; Tomar S
    Comput Methods Appl Mech Eng; 2012 Nov; 247-248(11):201-215. PubMed ID: 24511167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient isogeometric thin shell formulations for soft biological materials.
    Roohbakhshan F; Sauer RA
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1569-1597. PubMed ID: 28405768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isogeometric iFEM Analysis of Thin Shell Structures.
    Kefal A; Oterkus E
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32397202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part II - Nonlinear Examples.
    Almeida ES; Spilker RL
    Comput Methods Biomech Biomed Engin; 1998; 1(2):151-170. PubMed ID: 11264802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical modeling of fluid-structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains.
    Balzani D; Deparis S; Fausten S; Forti D; Heinlein A; Klawonn A; Quarteroni A; Rheinbach O; Schröder J
    Int J Numer Method Biomed Eng; 2016 Oct; 32(10):. PubMed ID: 26509253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discretization of Non-uniform Rational B-Spline (NURBS) Models for Meshless Isogeometric Analysis.
    Duh U; Shankar V; Kosec G
    J Sci Comput; 2024; 100(2):51. PubMed ID: 38966340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Unified Determinant-Preserving Formulation for Compressible/Incompressible Finite Viscoelasticity.
    Wijaya IPA; Lopez-Pamies O; Masud A
    J Mech Phys Solids; 2023 Aug; 177():. PubMed ID: 37724292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I - Alternate Formulations.
    Almeida ES; Spilker RL
    Comput Methods Biomech Biomed Engin; 1997; 1(1):25-46. PubMed ID: 11264795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multigrid methods for isogeometric discretization.
    Gahalaut KP; Kraus JK; Tomar SK
    Comput Methods Appl Mech Eng; 2013 Jan; 253(100):413-425. PubMed ID: 24511168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nested block preconditioning technique for the incompressible Navier-Stokes equations with emphasis on hemodynamic simulations.
    Liu J; Yang W; Dong M; Marsden AL
    Comput Methods Appl Mech Eng; 2020 Aug; 367():. PubMed ID: 32675836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.